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AN ATMOSPHERIC NOISE MODEL WITH APPLICATION TO

LOW FREQUENCY NAVIGATION SYSTEMS

j BY

Donald Alexander Feldman

Submitted to the Department of Electrical Engineering

on 30 June 1972 in partial fulfillment of the require-

ments for the Degree of Doctor of Science

ABSTRACT

I A prerequisite for the design of low frequency radio receivers is
a model for low frequency atmospheric radio noise that encompasse the
non-Gaussian nature of the actual noise process and is sufficiently tract-
able to enable performance analysis and optimization of receiver designs.
This work describes a new model for atmospheric noise waveforms
observed at the output of t he antenna bandlimiting filter. This model,
which is based on statistical analysis of sample records of these wave-
forms, is used to analyze the performance of typical radio navigation
receivers and to determine near optimum receiver performance. The
analysis is verified by simulating the receiver structure and testing
the receiver with the actual noise sample records.

The proposed model for bandlimited atmospheric noise utilizes a
background Gaussian process, of constant power level, to which is added
discrete bursts of Gaussian noise whose power level, for each burst, is
a random variable. The burst occurrences and the power level are com-
mon to waveforms observed in disjoint frequency channels and provides
a model for the statistical dependence between such waveforms. The
model is shown to match first order characteristics of a bandlimited
noise waveform and a noise envelope, recorded in disjo at channels,
over a range of noise conditions from nearly Gaussian to he severest
noise caused by frontal thunderstorm activity. The length of cach noise
burst, and occurrence rate intensity, are both stochastic in the model.
A non-homogeneous Markov process provides a description of these burst
characteristics and is shown to result in an envelope autocorrelation that
matches observed correlations over periods of 1 millisecond to 1 second.

j THESIS SUPERVISOR: Amar G. Bose

TITLE: Professor of Electrical EngineeringI
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The atmospheric noise model is used to analyze the performance of
three basic types of phase-locked-loops used in navigation receivers.
The first of these is a linear time-invariant loop optimized for the noise
power level. The second adds a 2,ero memory nonlinearity in the path of
the loop error signal and is optimized to the first-order noise probability
density. Yie third is a near optimum structure that uses the joint chan-
nel noise model and the second channel noise envelope to convert the
atmospheric noise process to an approximate time-varying gaussian pro-
cess. This can be optimally filtered by a time-varying Kalman-Bucy
estimator. It is shown, using the recorded noise sequences, that the
simple nonlinear loop provides performance improvements of up to 16 dB
compared to the time-invariant linear case, and that the optimum time-
varying filter provides additional improvements of up to 3-5 dB when
receiver processing intervals are less than several seconds.

The work concludes with suggestions for further research, including
an application of the joint channel noise model to the design of an optimum
digital communication receiver that appears to be both practical and offer

'I significant performance advantages over present designs.
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C hapter 1

INTRODUCTION

The Very-Low Frequency (VLF, 3-30 kHz) and Low-Frequency (LF,

30-300 kHz) electromagnetic spectrum is extensively used for digital

f radio communications and radio navigation. When the performance of

these radio systems is limited by noise, such noise is generally atmo-

j spheric radio noise, additively combined with the signal at the receiving

antenna. Thermal noise in the antenna-receiver system is generally of

I. a lower level than this radio noise. The principal source of the domi-

nant atmospheric noise is radiation from lightning discharges, which

propagates considerable distances at these frequencies. When atmo-

F spheric noise waveforms are observed at the output of the receiver band-

limiting filters used at these frequencies, it is described with words

I. such as "impulsive," "peaky," "crashy," etc., recognizing the fact

that individual lig.f.•ning discharge events are discernible and tend to

dominate the waveform at any given time instant. A result of this indi-

vidual dominance is that statistical descriptions of the noise waveform

are, in general, distinctly non-gaussian since the individual dominance

condition clearly violates the basic assumption of the central limit theo-

rem. The design of receiver structures for processing signals, cor-

rupted by non-gaussian atmospheric noise, is a difficult procedure and

the results depend critically upon the statistical characteristics ascribed

to the noise. Improved characterization/design procedures are useful

I. goals for VLF/LF systems because of the large costs associated with

obtaining equivalent receiver performance improvements by increasing

radiated signal power. For example, the costs of erecting antenna

I
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structures vary as the fourth power of the height above 800-1000t.

The research reported here has addressed the problem of improving

the statistical characterization of low-frequency atmospheric noise for

the purpose of improving the design of VLF/LF radio systems. The

succeeding work is divided into four parts. Chapter 1, Introduction,

provides a qualitative description of the physical noise process to moti-

vate our conceptual approach to the problem. This approach is placed

in perspective to the results reported by other workers during the past

twenty years. Chapter 2, Experimental Data, is a tabulation of the vari-

ous measurements we made of atmospheric noise waveforms using a

digital data collection system. Most of this data represents new con-

tributions to the literature of this field. Chapter 3, An Atmospheric

Noise Model, presents a mathematical model for bandlimited atmospheric

noise waveforms which describes first-order statistics, time structure,

and the statistical dependence of waveforms observed in different fre-

quency channels. Chapter 4, An Optimum Design for Navigation Re-

ceivers, applies classical servo-mechanism theory to the design of a

nonlinear Phase-Locked Loop (PLL), and exploits the co-frequency-

channel dependence of the noise to design a near-optimum Kalman-Bucy,

time-varying PLL. Performance predictions of the designs, based on

the noise model, are verifier] with the use of atmospheric noise sample

records. Chapter 5 concludes with suggestions for further work, in

particular, with other applications of the noise model to digital com-

munication receiver design.
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1. 1 Atmospheric Noise Mechanism

Electromagnetic radiation from lightning discharges, the principal

source of atmospheric noise, have been extensively studied.1 -3 While

there is a wide diversity of specific details in these measurements,

there is agreement as to the general structure of these discharges. A

basic cloud-to-ground discharge consists of a series of short current

pulses associated with the advance of the ionization of the air dielectric

along the incipient discharge path, followed by cloud-to-ground move-

j ment of the electric chargewhich created the initial potential difference.

Figure 1-I(A) shows the rauiation from such a basic discharge with the

ionization noise and large cloud-to-ground pulse clearly observable.

This oscilloscope photograph was made at the amplified output of a

broadband loop antenna with -3 dB bandwidth of 15 to 85 kHz. Maxwell3

reports that the spectral energy of the initial ionization burst, termed

the leader stroke, 4s centered at 30 kHz, whereas the main stroke,

termed the return stroke, has a peak of spectral energy in the region

of 3-8 kHz. The leader stroke has been observed to have an average

length of 1 msec, whereas the return stroke falls in a 100-200 Jtsec

category.

A large number of discharge events, perhaps a :,ajurity under

conditions of large, high energy storm cells, are' composed of compli-

cated repetitions of the basic discharge just degcribed. Repeated return

strokes are termed multiple discharges and have been observed to con-

sist of 20-30 such strokes lasting for periods of 200-500 msec. 1,4

Figure I -1(B) shows several return strokes occurring in a short time

frame, while 1-1 (C) shows a longer segment of a multiple discharge.
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Of particular interest to our work is the fact that these more complicated

discharge patterns have a "leader" type pattern that becomes a continu-

um noise burst rather than a series of identifiable strokes or events.

Since this leader structure has a principal spectral energy above 30 kHz,

whereas the return strokes are centered below this frequency,we would

expect significant differences in the time structure of noise waveforms

observed at different frequencies with respect to 30 kHz. This is indeed

often the case, as is seen in Figure 1-1(D). This tendency of complex

f discharge events to appear as continuous noise bursts has been noted by

many experimental workers. 4 ' 5 Gupta 4 provides comparative tracings

1 of single and multiple discharge noise patterns observed at the output of

a narrow-band filter followed by an envelope detector. These tracings,

made at frequencies in the MF and HF region, clearly show the compli-

I cated burst structure of both the single and multiple discharge phenom-

ena.

We have been, up to this point, implicitly considering the structure

of lightning discharges observed near the source where we may assume

single mode (ground-wave) propagation from source to observer. In

C determining the total observed atmospheric noise spectrum one must also

consider propagation effects which are very significant and change radi-

I cally from VLF to LF, and above. The sum total of these effects is

given by Maxwell 3 in determining the broad spectral characteristics of

atmospheric, noise. All of the work in this area has been summarized

jby Oh 6 who provides a plot from kHz to G1z of relative noise intensity

and the references for measurements at various frequencies. We shall

I not be -oncerned with these relative levels of atmospheric noife; rather,

I
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we have sought to provide a qualitative background on the nature of the

discharge process to motivate our conceptual approach to the problem

and to point out the fundamental changes in structure that occur %ith

frequency. These changes and the effect of propagation will be seen in

many of the measurements to be reported in Chapter 2.

1. 2 Experimental Noise Data

The statistical measurement of atmospheric radio noise that has

been most often reported in the literature is the exceedance probability

(one minus the cumulative probability) of the noise envelope at the output

of a bandlimiting filter. A representative but not exhaustive list of such

work is given by references 1,2, 5, 7-13,30. The major reason for

the use of this characterization is its ease of measurement with rela-

tively simple analog circuits, threshold detectors, and counters. Evans 8

and Coon 9 recorded noise waveforms on analog tape recorders and later

derived these measurements from digital computer processing of the

sample records. The exceedance probability is usually plotted on Log-

Log versus Log paper where a Rayleigh distribution appears as a

straight line of slope 2. From these measurements workers have con-

cluded that Lhe atmospheric noise waveform consists of a low amplitude '"

Rayleigh component (implying a low-amplitude, gaussian-distributed

component in the narrow-band waveform) with a large amplitude com-

ponent due to distinct or dominating lightning bursts. Most workers have

used a log-normal or 1/ya probability density function to fit the observed

large amplitude excursions.

The only statistical characterization of the time structure of
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atmospheric noise waveforms that has been reported 7 9 has been some

type of level crossing measurement. Generally this takes the form of

a probability density for the time until a given level is crossed in the

upward direction by the noise envelope, given that an upward crossing

occurred at time zero. The principal conclusion from these measure-

ments has been that the discrete discharge events, assumed to be de-

tected by such a measurement, are not independently distributed in time

I. (a Poisson process) but rather tend to cluster, i.e., there is a higher

j than expected probability that another event will occur after an initial

event has been detected. This effect is a manifestation of multiple dis-

I charge phenomena.

In considering what type of statistical parameters to measure to char-

I acterize the time structure of atmospheric noise, one must bear in mind

I that a theoretically infinite set of probability distributions is required to

completely describe this structure. The usefulness of any particular

Iparameter selected can only be judged in relation to its end use. While

level crossing measurements are quite illuminating of the temporal be-

I havior of discharge events, it is not clear that they are equally useful

I to the receiver engineer, especially at higher band-center frequencies

where the complex leader structure becomes dominant. As will be seen

Iin Chapter 2, we have selected a much different characterization of

atmospheric noise time structure.

1.3 Proposed Noise Models

1.,3.1 Impulse Model

A number of different models for atmospheric noise waveforms have

appeared in the literature over the past 15 years. The majority of these

!
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might be termed "impulse models" for they derive their motivation

from an approximation of the actual generating mechanism by an impulse

train exciting the narrow-band observation filter. One might also term

them physical models because thb! model parameters can usually be

closely linked to physical quantities or filter parameters. The classic

model of this type is that given by Furutsu and Ishida.10 Their model

includes not only a Poisson distributed ware of impulse functions of ran-

dom energy, but further Poisson distributed pulse bursts following a

basic impulse. They were concerned with MF and HF atmospheric noise

and this type of model accounts for the complex leader or continuum

structure dominant at these frequencies. The general approach10 ' 14, 15

to the determination of noise statistics at the output of the observation

filter, for this type of model, has been to use Price's technique with

characteristic functions to determine the first order and higher proba-

bh.ty densities in the characteristic function domain. The resulting

expression cannot in general be transformed to yield a probability den-

sity function (pdf) except at the large and small amplitude limits. The

2noise model given by Beach is of this impulse type and is the most com-

plex model that we are aware of, including a number of different rate

parameters for weather patterns, time-of-year, etc. Beckman1 I

utilizes a different approach with much the same result in terms of the

envelope pdf. These models are well suited for the inference of physical

parameters (such as storm cell distribution or propagation parameters)

from observed noise waveforms but are difficult to use for receiver

engineering, nor do they provide insight into the actual noise structure

on which the receivcr processor must operate. An exception to this
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seems to occur for ELF noise waveforms as considered by Evans and
,.14

Modestin, where, due to the frequency (3-300 Hz) and bandwidth, the

noise is completely dominated by the return stroke phenomena which at

this bandwidth is well modeled by an impulse function. Snyder16 also

uses an impulse model as a vehicle for the derivation of the optimum

I. estimator equations for a binary detection receiver. Snyder's approach

is only dependent upon structure, avoiding any explicit reference to

probability distributions. However, the resulting equations form an

jinfinite set of coupled partial-differential-integral equations which are

as difficult to exploit15 as the determination of the complete model

3 statistics at the filter output.

11. 3. 2 Communication Models

A number of atmospheric noise models have appeared in the com-

munications literature1 7-20 and have been directed towards receiver

design. A principal feature of these models is that they attempt to

describe the noise waveform at the output of the bandlimiting filter with

only peripheral concern for the underlying generating mechanism.

Kapp utilized a "switched process" model, originally due to Kurz,

I in which the observed waveform was given as either a bandlimited

I gaussian process or an impulsive process with first order Cauchy pdf.

The probabilit,, of "finding" one or the other of these distributions is

SI then a measure of the impulsiveness of the noise waveform.

A much different model was given by Shaft17 in which the envelope

I ui the narrow-band process is given as EXP(n(t)), where n(t) is a

gaussian process. This expression only provides correct large amplitude

I
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behavior of the model; however, Shaft reports satisfactory application

of the model to the prediction of VLF modem performance.

1. 3.3 Multiplicative Noise Model

Hall1 8 proposed a model in which the narrow-band noise waveform

at the filter output is given as y(t) = A(t) • n(t), where n(t) is a conven-

tional gaussian process and A(t) i.s a lowpass random process. The time

structure of n(t) is that obtained by illuminating the bandlimiting filter

with white noise. The modulating process, A(t), is used to increase the

dynamic range of the basic gaussian process to match that exhibited

by atmospheric noise waveforms. At the same time, the time structure

of A(t) is available to iraitate the complex time behavior of the dis-

charge process. Hall demonstrated that with an assumed generating

nechansim (which will be covered in detail in Chapter 3) the first order

statistics of either the envelope or the narrow-band rf process could

be expressed in closed form for his model and that this form matched

quite well the various reported exceedance probability distributions of

the noise envelope.

Recalling the discussion of the complex nature of the discharge

event, in particular, the tendency at LF and above for the noise mech-

anism to be dominated by the leader or fine structure, we see that

there is considerable motivation for the multiplicative noise model.

The modulating process, A(t), we can associate physically with the

fluctuatLig power level of the atmospheric noise at a receiving site,

caused both by different sources and the long noise burst characteris-

tics of multiple discharges at individual sources. The use of Aft) to
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to model these effects at the filter output offers the possibility of approx-

imating the very complex behavior of the lightning discharge process by a

simpler description of a random generating mechanism for A(t).

Another concept that we have evolved in considering this type of

model is that A(t), modeling the envelope of the broadband discharge

process, should be common to noise waveforms observed in nearby but

disjoint frequency channels. Noting that our final goal is the use of the

model in receiver design, this concept has considerable importance for

f if one knew A(t) exactly, then the corrupting noise waveform would be-

come a time-varying or non-stationary gaussian process. Existing sig-

[ nal processing designs generally include time-varying gaussian noise

as the most general case, and hence the difficult, non-gaussian, atmo-

spheric noise problem would have the potential for being converted to a
m,,-.', more tractable time-varying gaussian problem. While there have

been a few references in the literature21,22 to using information from

I adjacent frequency channels, these are based on an assumed determinis-

tic relationship between noise waveforms, that both are generated by

an ideal impulse exciting the respective filters. Our postulated model

Sappears to be the first attempt at modeling a statisLical relation between

such waveforms.

j We began the experimental phase of this research by approaching

the design of a data collection system to answer certain questions about

I the suitability of such a conceptual multiplicative model. The specific

j measurements, the system designed to obtain these, and the analyzed

results are given in the next chapter.

!
I



Chapter 2 -2?-

EXPERIMENTAL DATA

In Chapter 1 we discussed the nature of electromagnetic radiation

from lightning discharges as it affects low-frequency radio noise. From

this discussion and a review of past efforts at modeling the noise pro-

cess, we postulated a multiplicative noise model as suggested by Hall.18

This model is given as y(t) = A(t) n(t), where y(t) is the output of a

bandlimiting filter excited by received atmospheric noise fields and

represents the waveforms that must be processed by the receiver. The

term n(t) is a conventional narrow-band gaussian process and A(t) is a

lowpass random process. This conceptual form of model had two

appealing features for our requirement of a noise model that was par-

ticularly useful for receiver design: 1) The modulating process A(t)

could be used to absorb the very complex, long-time nature of the actual

discharge process which is broadband and excites all nearby frequency

channels; 2) a knowledge of or good approximation of A(t) would convert

an untractable non-gaussian noise problem into a much simpler time-

varying gaussian problem for which optimum solutions are known. In

this chapter we describe an experimental program formulated to answer

the two basic questions raised by point 1) above: Are the actual noise

waveforms amenable to these interpretations? Our purpose in this

chapter is to provide a broad overview of the measured noise charac-

teristics prior to detailed development of a mathematical model and

comparison of model characteristics with the observations.
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2. 1 Noise Characteristics Measured -26-

The instrumentation system that was constructed for this work is

described in section 2. 2 below. This system was designed to measure

the following statistical characteristics of bandlimited atmospheric noise

waveforms at frequencies of 14, 65, and 83 kHz and bandwidths of 1, 10,

and 20 kHz.

S. 1 1) Probability Densicy.Noise waveforms were sampled at periods of

1 to 20 milliseconds with sample records of 105 samples. These were

analyzed to estimate the noise probability density (pd) using a rectangular

approximation over small intervals.

"2) Joint Probability Density.Simultaneous samples of a noise wave-

form in frequency channel one and the noise envelope in a non-overlapping

frequency channel two were recorded. These were analyzed to estimate

I_ the joint pd surface and various conditional statistics of these two, depen-

dent, variables.

3) Conditional Sampling.Samples of noise waveforms were taken,

conditioned by hardware upon a given event in another channel, to

reinforce the measurements of (2).

4) Autocorrelation. The autocorrelation of the noise waveform was

measured by sampling the waveform at an integral multiple of the band-

center frequency period and autocorrelating the resulting record.

1 • 5) A(t) Estimates. To generate an estimate of the short-term power

level of the atmospheric noise, represented by A(t) in the model, we

j integrated the absolute value of the noise waveform

A(t i) = • " t.i AT t

I
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for fixed time periods of 1 and 10 msec. It is well known that a

statistically optimum estimate of an unknown, gaussian noise, power

level is given by an average of the observations squared. However, for

atmospheric noise waveforms with a dynamic range in excess of 80 dB

this requires squaring circuitry with a dynamic range of 160 dB, which

is presently unattainable. The use of the magnitude was selected as a

realizable alternative. These estimates of A(ti) were made in two fre-

quency channels simultaneously and used to determine the auto and

cross-channel correlation of A(t).

The exact computational algorithms used to realize these estimates

and approximate error analyses are given in Appendix B.

2.2 Instrumentation System

A functional description and performance measurement of the in-

strumentation system is given in Appendix A. The basic functions of

the system are de,, -ibed below.

1) Analog Processing. Atmospheric noise fields were received on

a one-meter loop antenna, amplified, and filtered with a bank of LC

notch filters to remove possibly saturating communication signals. The

notch filtered signal was bandlimited to four channels by fixed tuned LC

filters. The dynamic range of the system to this point was greater than

100 dB, with system noise better than 6 dB below the quiescent or back-

ground atmospheric noise level. These four channels were processed

through two wide-band amplifier samplers or two rectify-integrate-hold

circuits. The sampler dynamic range was greater than 80 dB, with a

600-nsec gate,and included appropriate offset adjustments. Ihe active



rectifier circuits had a linear range of 76 dB. The rectifier outputs

could also be fed to a 20-kHz lowpass filter and thence to the wide-band

samplers for envelope data collection.

2) Digital Processip. Digital processing began with a 1 MHz ultra-

stable crystal oscillator, which was used as a system clock to control

( all sampling and data handling functions. A wide variety of sampling

modes could be generated, from rates of 100 kHz to 0. 1 Hz and in con-

tinuous or burst patterns. Special circuits allowed coarse synchroniza-

tion of the sampling pattern with receivd pulse signals from the Loran-C

navigation system28 so that noise data could be taken at this operatingf
frequency (100 kHz) without signal contamination. The four sampled

analog channels could be connected to the Analog-to-Digital converter,

in various periodic sequences, to provide 15 bit, ±10 volt digitizing

capability to all channels. Digitized data was stored in an 8K by 16 bit

core memory prior to asynchronous recording on paper tape.

j 3) Data Recording. Digital data was recorded on a 1K bit-per-second

paper tape punch for convenient input to the small computer system used

throughout this research program. Data flow was asynchronous from

[ the buffer memory via an optical isolator to prevent transient contami-

nation of the analog system.

[. A complete description of parts (2) and (3) of the data system i6

given by Lee.24

2. 3 Classification of Observations by Weather Conditions

The instrumentation system was extensively tested on known deter-

ministic and random signal sources as described in Appendix C. Prelim-

I:
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inary recording and analysis of atmospheric noise was conducted at

Cambridge, Massachusetts during July 1971. The complete data record

on which the remainder of this work is based was made during the period

10 August to 22 August 1971 at the United States Coast Guard Electronics

Engineering Center, Wildwood, New Jersey, which is located 90 miles

from the nearest urban area. The loop antenna was mounted on top of

a single story concrete block building approximately 1/4 mile from the

ocean. The antenna reception null zones were oriented to minimize

received signals from the Loran-C transmitting stations at Nantucket,

Massachusetts, and Cape Fear, North Carolina.

During the data collection period the Eastern Seaboard experienced

three distinct types of weather patterns that were highly correlated with

the observed atmospheric noise characteristics. For convenience in

referring to the different noise conditions, we have termed the three

basic weather/noise conditions "quiet," "tropical," and "frontal." The

frontal condition occurred on 11 August 1971 and was caused by an ad-

vancing cold front with extensive thunderstorms along the squall line.

Heavy rain and visual lightning passed over the observation site 3 hours

after the frontal data was recorded. The weather during the next week

was dominated by a high pressure air mass that had caused the frontal

conditions. This air was cool and stable with very little thunderstorm

activity and produced the quiet conditions. As this weather pattern

moved to the east, a flow of warm, moist, unstable air from the Gulf

of Mexico overspread the East Coast. This tropical weather period had j

a high geographic density of thunderstorm activity, especially in the

afternoon at the time of maximum accumulated energy in the vertical

I.
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air thermals. As will be seen, the quiet noise conditions were quite

close to being gaussian and hence these, or gaussian conditions, repre-

sent probably a majority of year 'round noise conditions in temperate

( latitudes. The tropical conditions we would describe as typical "dog

days of August" weather that one experiences during the East Coast

t summer. The frontal conditions, producing severest noise conditions,

I were only observed at five distinct times during the July-August period

that we made observations and were all associated with frontal weather

( patterns. Frontal noise, then, represente atypical temperate latitude

behavior, but is possibly representati,,e of more common conditions in

I equatorial regions. 1 ! In addition to these three basic noise conditions,

I. a transitional condition was ob, ,,yve Wuring the night when the tropical

air flow was moving over thU n._Lddli Atlantic region. This is labeled

"quiet-night" in what follow,.

Our sample of atmospheric noise conditions, while taken in a rela-

I tively small time frame, is probably representative of a wide variation

of noise conditions that one would find throughout the world. This state-

ment will be given more meaning in Chapter 3 where we shall observe

that the various noise conditions can be related to extreme ranges in

important model parameters.

2.4 First Order Probability Density of Atmospheric Noise

2.4.1 Single Frequency Channel Probability Density

j The range of the first order pd of a bandlimited atmospheric noise

waveform, at VLF and LF, is shown in Figui-e 2-1. These observations

[ were made at each frequency with different gains which attempted to

I
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optimize use of the 80 dB dynamic range of the A-D converter. The

combined plots were made by removing the differential scale factor,

resulting in a pd that would have been measured by a fixed gain system of

greater dynamic range. The scale factor between frequency channels

is arbitrary, no attempt was made in this work to determine relative

t noise levels between frequency bands (see Maxwell, 3 Oh6 ).

The most striking factor in these plots is the wider variation in

pd's at LF (65 kHz) than at VLF (14 kHz). This is a consequence of two

physical factors,3 propagation and the frequency dependence of the dis-

charge characteristics. Propagation attenuation is a factor of 10 greater

(. (@ 8000 KM) at 65 kHz compared to 14 kHz, increasing to a factor of 100

at 100 kHz. 3 Thus the received atmospheric noise field at VLF is sen-

I sitive to a much wider geographic area than at LF. At the New Jersey

S I observation site this meant that the 14 kHz observations, during quiet

conditions, included discharge effects from much farther south, regions

[ of greater thunderstorm activity than affected the 65 and 100 kHz obser-

vations. During the frontal observations, the received noise field was

[ dominated by the intense lightning activity along the cold front squall

[ line. At this time, the long multiple discharge phenomena produced

a near continuum of noise at LF and above, while the VLF noise con-

sisted principally of distinct pulses from the return stroke (see Fig-

ure 1-1(D)). These observations support our qualitative analysis of

expected differences in VLF and LF noise waveforms.

SSeveral workers have suggested6 ' 18, 25 that a bandwidth of 10 kliz

plays an important roh in the behavior of atmospheric waveforms. The

arguments given involve the dependency of peak value of a noise burst

I



""-w

-35-
on bandwidth, with 10 kHz being the point at which this dependence

changes from a linear relation to a square root relationship. This

prediction is based on a comparison of the average length of a return

stroke (100 ý±sec) to the effective Filter impulse response time, and a

consideration as to whether the discharge appears as a noise burst or

an impulse. It is not clear what effect this consideration has on the

noise pdf, however, our observations at LF show no important differ-

ence in noise pd's measured at 1, 10, and 20 kHz bandwidths. Fig-

ure 2-2 shows the noise pd at 65 kHz, in 1 and 10 kHz bandwidths,

plotted on a normalized amplitude 7cale illustrating this fact..
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leader stroke component of the noise burst, which for a single discharge

has an average length of 1 msec. One would suspect, if this is the case,

[ that observations made in bandwidths much less than 1 kHz would show

significant differences, however, we have not made any observations

[ at these bandwidths. We shall discuss the role of filter bandwidths less

than 1 kHz in Chapter 3 as they significantly affect signal processing

I. structures. However, in the remainder of this chapter, we shall treat

( all of the LF data as equivalent at the three observations bandwidths of

1, 10, and 20 kHz with only notations on the figures to indicate the band-

width used. All of the data recorded at 14 kHz was taken in a 1 kHz

bandwidth.

2.4. 2 Joint Frequency Channel Probability Density

As we have noted, a principal feature of the multiplicative noise

I model that we have postulated is that the modulating random process,

A(t), is common to nearby but disjoint frequency channels. To explore

this concept we recorded samples of the bandpass noise in one frequency

channel, termed the rf channel, and the bandpass envelope in an adjacent

frequency channel, termed the envelope or pilot channel. The decision

to use the envelope as a short term measure of the fluctuating power

level rather than the A(ti), used to estimate the dynamic properties of

A(t), was based on tests to determine which of these parameters had the

highest correlation coefficient with the magnitude of the bandpass noise.

The results of these tests are shown in Figure 2-3 where the use of the

envelope is seen to result in a slightly larger cross-correlation coeffi-

cient.
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Figure 2-4 shows two oscilloscope photographs of the pilot channel

envelope and rf channel noise for a multiple discharge and scattered

low level single discharges. Inspection of the relationship of the pilot

channel envelope (dots were added to distinguish this trace) shows that

this envelope does not "follow" the rf noise level in a simple deter-

I- ministic manner. For example, the four large rf bursts labeled A,

4 B, C, and D do not have the same response in the pilot channel. In

principle, if we knew the state of the respective rf, and the pilot chan-

( nel bandlimiting filters at some time and the exact form of the broadband

atmospheric noise excitation for future time, we could calculate these

I responses deterministically. The implicit aseumption of our multipli-

I cative noise model is that we do not have this information; we seek

rather a noise model that describes these relationships in an average

j or statistical sense. It would appear from these photographs that our

concept of a multiplicative noise model, with A(t) independent of fre-

I quency, would provide a plausible basis for modeling these relations.

RF channel and pilot channel waveforms, such as those seen in

Figure 2-4, were sampled at 1 kHz rates in bursts of approximately 10

seconds. The burst length was determined by input/output rate and mem-

ory capacity of the instrumentation system. The pilot channel sample

.. was taken 0. 7 msec after the rf sample to compensate for the differing

group delays in the respective bandlimiting filters. This delay differ-

ence produced the lag in the cross-correlation peak seen in Figure 2-3

and the obvious delay seen in the photographs of Figure 2-4. The pilot

channel center frequency was 83 kHz with a 0. 9 kHk. bandwidth for all

1. recordings, whereas rf channels were located at 65 kHz with 1 and

IL*
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and 10 kHz bandwidths and 100 kHz with a 20 kHz bandwidth. Appen-

dix A provides a description of these filters. For the 100 kHz record,

sampling bursts were restricted to 3% msec in length and were time-

interlaced with the on-air, pulsed, Loran-C navigation 2 8 signals. Joint

channel sample records were not made at VLF frequencies.

These joint channel sample records were used to estimate the joint

probability density surface for rf samples from channel 1 and envelope

samples from channel 2. The analysis algorithm is given in Appendix B.

The probability density surface is shown in Figure 2-5 for quiet and

frontal conditions. For the quiet data, we see that the surface for most

rf and envelope levels shows no correlation; it appears as a product

of an envelope type density and an rf density. At large envelope values,

however, the conditional rf density (a line of constant envelope value)

begins to shift to the right, indicating larger rf values are

more probable at increasing values of the pilot channel envelope.

The frontal surface shows much the same behavior, except that the

dependency of the rf density on the conditioning envelope value extends

over nearly all of the observed range of these variables. In Fig-

ure 2-6, the joint probability surface for tropical conditions is shown,

and exhibits a dependency behavior intermediate between the quiet and

frontal surfaces. Figure 2-6 also shows the one data recording made

of joint envelope dependency between two frequency channels. The move-

ment of the peak of the envelope density, parallel to the conuitioning

envelope axis and then to the right for larger values, provides a clearer

indication of the nature of the statistical interrelation between noise

waveforms in disjoint channels.
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A more intuitive measure of this interrelationship, that can be

displayed in two dimensions, is the standard deviation of the rf noise

waveform, conditioned on the value of the envelope in the pilot channel.

I For our discrete sample record this is given as

( I N(h) R 2(iE2 (h)/

RFf (h) IN) RFf(i I Ef2 (h) < Ef 2 (h) 4Ef2 (h) + AE) . (2.1)

Plots of this joint channel statistic for various noise conditions and band-

width are shown in Figure 2-7. These plots were computed directly from

( the raw data, not smoothed estimates used in the joint density surfaces.

Note that the relative scale factors used for different data records,

removed in Figure 2-1, are present here. The horizontal portion of each

of the plots in Figure 2-7 corresponds to the region of the joint density

surface where there is no statistical dependence between channels. Phys-

ically, this portion is due to the background atmospheric noise component

where one cannot identify the effect of any single discharge. The rising

[ portion of the plot corresponds to those components of the noise wave-

form that are clearly influenced by a dominant lightning discharge, and

a linear dependence is seen in this joint channel statistic. It is also

L important to note that this linear dependence holds for all noise condi-

tions, from quiet, where only 10% of the samples fall in the correlate!

region, to frontal, where 90% fall in this region. The nature of the

joint channel noise dependence will be considered in greater detail in

t Chapter 3 in connection with the mathematical noise model.

"The method used to determine these percentages is given in Chapter 3.

I-
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2. 5 Time Structure of Atmospheric Noise

2. 5. 1 Power Spectral Density

A large number of experimental observations 6 show that broadband

atmospheric noise has an approximate 1/f dependence from 10 kHz to

( 200 MHz. When such noise is observed through a narrow-band filter,

we would expect that the noise at the filter input may be considered to

have a flat power density spectrum (white noise) across the effective

f filter bandwidth. Thus the power density spectrum of the bandlimited

noise should be proportional to the filter response magnitude squared,

I._ or equivalently, the autocorrelation of the bandlimited noise should be

proportional to the autocorrelation of the filter impulse response.

I To test this hypothesis, the envelope of the autocorrelation coefficient

of bandlimited atmospheric noise was measured by sampling the wave-

form at an integral multiple of the period of the nominal center frequency

of the narrow-band filter and autocorrelating this sample record. If one

uses Rice's representation for a bandlimited waveform, it is well known2 7

that the autocorrelation function is given as

R(T) = R aa(T) cos (W oT) + R ab(T) sin (w 0OT),

[ where Raa(T) is produced by the power spectral density component sym-

metric with respect to the frequency, wo and Rab(T) by the anti-symmetric

Scomponent. By choosing the arbitrary center frequency, wo,, as the fun-

damental of our sampling frequency (nominally band center) we see that

I- the autocorrelation of our sample record will be

I R(nT) = Raa(nT),

I
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which is the symmetric component of the autocorrelation envelope.

This component of the autocorrelation envelope was estimated,

using an 8000-point sample record, for three different filter shapes.

The filter was alternately excited by atmospheric noise and a known

white gaussian signal source (General Radio Type 1390-B Random Noise

Generator). The experimental autocorrelation envelope is shown in

Figure 2-8. Two sources of error affected these measurements, slight

differences in the sampling frequency, which produce a slightly differ-

ent symmetric spectral component, and the greater instability of the

estimate with atmospheric noise. The first factor produces slightly

different shapes of the main lobe at the origin, while the latter produces

greater fluctuations in the "long-time" correlation estimates. The

results shown in Figure 2-6 appear to confirm the general hypothesis

that received atmospheric noise fields may be considered white with

respect to typical filter bandwidths. The import of this fact to signal

processing problems is that no unique information is conveyed by knowl-

edge of the bandlimited atmospheric noise correlation function, beyond

that provided by a white noise assumption.

2. 5. 2 Time Structure of A(t)

The second most important aspect of our experimental investigation,

after the measurements of joint channel characteristics, was an estimate

of the time structure (dynamics) required of the lowpass modulating ran-

dom process, A(t), in the multiplicative noise model y(t) = A(t) • n(t).

The integrated estimates, A(ti), were used to explore this behavior.

Preliminary tests of these estimators (see Appendix C) indicated that
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the I and 10 msec. integration periods provided a low variance estimate
of A(ti) when used with a gaussian signal source and rf bandwidths of

I and 10 kHz, and clearly exposed a periodic two-state power level used

to modulate the gaussian source.

Recordings of the A(ti) estimates were made for all noise conditions

at frequencies of 14, 65, and 83 kHz. The 100 kHz channel could not be

used since these A(ti) records, used mainly for correlation analysis,

were made in continuous bursts of 0. 5 sec and longer and such lengths

would have been contaminated by the pulsed signal groups of the operating

Loran-C navigation system. The A(ti) samples were taken simultane-

ously in two frequency channels, with the 1 msec integration periods

used to study the short-time structure of A(t), and the 10 msec estimates

the long-time structure. Physically, this corresponded to emphasizing

the structure of single bursts (average time of I msec) and multiple dis-

charges (average time 300-400 msec).

Prior to a discussion of the correlation analysis of these A(ti)

records, it is of interest to inspect an actual sample record as shown

in Figure 2-9. This is a plot of each sample point (the digitized inte-

grator output at 1 and 10 msec) connected by a straight line, witn the

appropriate time scale indicated. We see from the upper ! msec inte-

gration time the tendency of the noise fluctuations to cluster in bursts,

and also the greater fluctuation of the 65 kHz estimates in comparison

with the 14 kHz estimates. This is due to the intense leader structure

feund at these frequencies and above. The 10 msec sample record

makes this behavior more apparent, where there is a somewhat lower

range of excursions in the A(ti) estimates in the 65 kHz trace, but a
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larger fluctuation in the continuum component. This undulating behavior

is suggestive of a lowpass modulating process, with the addition of a

larger white or uncorrelated component.

The autocorrelation of the estimates A(ti) with 1 msec integration

times showed the same basic structure under all noise conditions as

shown in Figure 2-10. The A(ti) time series is dominated by an uncor-

related component producing the large discrete impulse at the origin,

followed by a small exponential type short time decay component. These

records were all made with a 1 kHz bandwidth; however, previous

records using a 10 kHz bandwidth showed the same behavior. We attrib-

ute this short-time decay to the stochastic length of single discharges,

including the leader stroke. The difference between the value of the

autocorrelation coefficient at 3-4 msec and that at infinity (computed

as the square of the average value of A(ti) is caused by the presence

of long multiple discharges, especially during the tropical and frontal

conditions.

The autocorrelation coefficient of the 10 msec estimates, A(ti),

show the exponential type decay due to this long-time feature as seen

in Figure 2-10. This figure shows the discrete impulse at the origin,

caused by the same impulse measured with the 1 msec estimates plus the

short-time correlation component observed there, followed by the long-

time decay which has a time constant in the 300-500 msec category. To

study this decay component several recordings were made with the start

of a sample burst triggered by the 10 msec estimate, A(ti), exceeding

a preset threshold. The 10 msec estimate would only exceed this

threshold when a strong multiple discharge had occurred, sufficient to
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cause A(t.) to rise well above the level normally caused by the background

noise plus the average single discharge rate. The autocorrelation of this

10 msec conditional sample record for tropical conditions is shown in Fig-

ure 2-11 where the exponential decay is strongly in evidence. We also note

the dramatic difference in magnitude of the decay component between 14 kHz

and 65 kHz due to the difference in the lightning burst structure at these

frequencies. Due to the effect of the conditioning circuit in these observa-

tions we should not draw general conclusions that this large a difference

is always present, as can be seen from the sample record in Figure 2-9.

During the quiet noise period when there was only scattered, rela-

tively low energy, discharge activity, there was little significant multiple

discharge phenomena. This is shown in the autocorrelation of the 10 msec

sample record from this period (Figure 2-12) in which there is little dis-

cernible long-time decay. The autocorrelation of the 10 msec sample

record for quiet-night conditions (Figure 2-12) does show the long-time

decay factor. This was caused by the north-moving warm air soon to

cause locally tropical noise conditions, and the fact that propagation dis-

tances are greatly extended at night by ionospheric reflections, thus

extending the region of geographic noise sensitivity towards the southern

warm air mass.

The various cross-frequency-channel correlations shown in Fig-

ures 2-10 through 2-12, which reach values of 0.95 in some cases,

reinforce the modeling concept of A(t) being frequency independent. We

note that cross-correlation is generally better for the 65 kHz-83 kHz

pair than for the 65 kHz-14 kHz pair. This is to be expected, due both

to the increased frequency separation and to the changing nature of the

dominant discharge mechanism at the 14 kHz frequency.
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The principal conclusion that we draw from the correlation analysis

of the A(ti) sample records is that there is not a significant time struc-I
ture in the time-varying noise power level. By significant, we mean a
structure that can be exploited in receiver design to estimate future

values of the power level from present observations. We shall find in

Chapter 4 that the noise time structure does have a demonstrable effect

[ on receiver performance and that this can be largely compensated for

by use o1 the joint channel information to estimate directly both the

correlated and uncorrelated component of A(t), without consideration

of a model for A(t) dynamics. Our experimental A(ti) measurements

will be used in the noise model development.

2.6 Summary

In this chapter we have presented a number of statistical measure-

ments of the characteristics of bandlimited VLF and LF atmospheric

1. noise waveforms. These characteristics were measured and interpreted

from the point of view of a postulated multiplicative noise model, y(t)

A(t) - n(t). The important results may be summarized as follows.

j a) Atmospheric noise waveforms, especially at LF, exhibit a wide

variation in characteristics dependent upon local weather condi-

tions. Since the two physical factors, propagation and noise

mechanisms, become more important at frequencies above LF,

I we expect this variation is similarly more pronounced at higher

I frequencies.

b) Measurement of first order joint statistics between a bandlirnited

rf noise waveform in frequency channel one and an envelope

(
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from frequency channel two show a significant statistical depen-

dence above a threshold value. The model concept that A(t) is

independent of frequency attempts to describe these observations.

c) The received, broadband, atmospheric noise field appears as

an uncorrelated random process when observed via narrow-band

filters. The average power spectral density of the observed

narrow-band noise is proportional to the square of the magnitude

of the filter's frequency response.

d) The hypothetical modulating process, A(t), should be basically

uncorrelated beyond 1 msec, with only a small short-time and

long-time dynamic damping. This observation is only valid for

observation bandwidths of 1 kHz or larger.

In the next chapter we shall develop a noise model based on the mul-

tiplicative concept which fits the observed data over the wide range of

observed noise/weather conditions.
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Chapter 3

AN ATMOSPHERIC NOISE MODEL

In Chapter 1 of this report we gave the motivational background for

a multiplicative model for bandlimited atmospheric radio noise. Chap-

ter 2 presented a number of experimental observations of characteristics

such a model must possess. In this chapter, we shall develop the spe-

cific mathematical form of a multiplicative model. This model will be

I compared with the observed data and it will be shown that the necessary

model parameters can be chosen in a logical manner. Principal weight

will be given to the modeling of the first order joint channel statistics

since the observations of Chapter 2 show that these are a distinguishing

characteristic of atmospheric noise. A method of generating an approxi-

mation to the time structure of A(t) will then be given and it will be shown

that using the parameters developed for the first order model, acceptable

. simulation results of the A(ti) estimates are obtained. Finally, a can-

onic atmospheric noise generator, suitable for computer implemen-

tation using uniform and gaussian random number generators will be

given. This is accompanied by a table specifying values of the model

parameters which describe the range of Pxperimental data reported in

I Chapter 2.

3.1 Hall's Noise Model

Hall18 suggested the multiplicative noise model y(t) = A(t) n(t) as a

description of a bandlimited atmospheric noise waveform in a single-

frequency channel. Hall proposed that the lowpass random process was

generated by the inverse of a chi process, that is,
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A(t) = b (t) (3.1)
Li=1l

where the bi(t) are statistically independent gaussian (N(O, 0) lowpass

processes. The first order pdf of A(t), the inverse of a X(mac) ran-

dom variable, is

(m/ 2) m/2 [-

PA(A) = m exp -m , -oo< A < +oo. (3.2)
A om r A I mAI+m 1  2a 2A

From (3.2) and the assumption that n(t) is gaussian (N(, ni) we can

compute the pdf of y(t) as

Py(Y) = y[A(y, n) PA (TI) dn

+[ _2 1 (m/2)m/2 [ ]d
IH1 ý- exp 2••H2'1nlexp - -----

=~ 0 0  * eF7 P[2c2  2 rni +1 2o 112
HnHTI Ormrkm)I

which yields

r I / 2 m/2
V"-27) mrnH )

P y(Y) = m+l -00 < y < +00, 0 < M,

2 m( y2

(3.3)

where we have set the o7 parameter of the chi process equal to I for

convenience since it only appears as a divisor of a nH* Recalling the

measured atmospheric noise pdf's given in Figure 2-1, we see that

expression (3. 3) has the correct basic shape to fit these; a slope of
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zero as y -- 0, a single "break-point" on a log-log plot at y2 > m•n2 and

nH

a hyperbolic decay beyond that point, appearing as straight line of

slope - (m+ 1) on a log vs log plot.

Expression (3.3) is a valid pdf for any m > 0, although Hall generally

restricted m to be integer. A best-fit selection of m can be made

from the large amplitude region of the data pd. Hall also suggested that

j the dynamics of A(t) could be provided by specification of a ra l -

power spectral density for bi(t). Thus we see that m has a second im-

I portant role in the degree of freedom allowed to effect the dynamics of

A(t).1.M
Hall provides a similar closed form expression for the atmospheric

noise envelope, from which hc .,-mputes the exceedance probability (one

minus the cumulative probability) of the envelope to compare with pub-

Slished data, principally that given by Watt. 7 He concludes that his model

provides reasonable fits to these data, with a value of m = 2 fitting most

data reported for moderate mid-latitudc noise conditions at VLF. Hall

[ also computes a level crossing statistic. However, since we have taken

a different experimental approach to considering time structure, we shall

I not deal further with the latter comparisons.

13.2 An Extension of Hall's Model

If we compare the pdf of (3.3) in greater detail with the observed

probability densities of Figure 2-1, we see that (3.3) does not have suf-

Sficient degrees of freedom to account for the second break point seen in

the tail of the quiet noise pdf. The occurrence of this breakpoint is indi-

I cative of the noise waveform becoming closer to a gaussian process,

1
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and by implication our model should have this capability of being reduced

to a gaussian process. A similar difficulty is encountered when we con-

sider the joint channel first order data (Figures 2-5 and 2-6). The gen-

erating mechanism of (3. 1) does not appear to p-ovide for the uncorre-

lated portion of the conditional rf noise standard deviation, if we make

our assumption that A(t) is deterministically identical for both channels.

A somewhat less important difficulty is encountered if we attempt

to associate a time structure for the b.i(t)as that provide-13 a " linea

lowpass filter excited by white gaussian noise. As was seen in Fig-

ures 2-10 through 2-12 the modulating process, A(t), must be domi-

nated by an uncorrelated component, but have two second order time

correlations. However, as will be seen, m values of 2 or 1 are re-

quired to match our observations and these do not provide sufficient

freedom in the A(t) generator mechanism of (3. 1) to meet these time

structure observations of Chapter 2.

The basic difficulty noted in the first order behavior of (3. 1) is

that the bandlimited atmospheric noise waveform has a distinct period

when it is in a nearly gaussian state, the so-called background compo-

nent we have referred to. Our first attempts to deal with this in terms

of A(t) consisted of adding a constant bias term to the dynamic A(t) gen-

erator of (3. 1). This has the effect of suppressing the dynamic compo-

nent until it exceeds a threshold, and this idea leads naturally to Kapp's19

idea of a switched process model. We have adapted this to Hall's model

as our proposed model, given as

y(t) = nI(t) + x(t) a(t) n 2(t), (3.4)
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where y(t) is a bandlimited atmospheric noise waveform. The process

a(t) n 2 (t) is identical to that given by Hall. We shall refer to it as the

"Hall component" and use 0 nH for the associated parameter of n 2 (t).

x(t) is a two-state process, assuming values one or zero with probability

XP and qx, respectively. The process n1(t) is a narrow-band gaussian

process (first order pdf N(O, aTG)) and provides the background gaussian

[component required of our model. The components nl(t) and n 2(t) are

A'*.- w-"tatistically independent, with power spectral densities proportional to

I the bandlimiting filter's magnitude response squared. The function of

x(t) is to "switch-on" the non-gaussian or Hall noise component, mod-

eling those time periods when the atmospheric noise waveform is in a

distinctly non-gaussian state. In addition to providing several more

degrees of freedom for first order statistics, we also have available the

time structure of x(t), coupled with that of a(t), to model the observations

I of A(t)'s time structure.

The first order pdf of y(t), defined by (3. 4), is given by

- (yy) = N(0, cnG) @9 [ q6 (j) +G pxyH(,n)]

S= qN(O, r'nG)+ pxN(O, 0nG) ® PyH(n), (3.5)

Swhere 0 denotes convolution, 6(.) the Dirac delta function, and PyHCrl)

is the Hall pdf, (3. 3). The characteristic function (cf) of py(y) can be

expressed in closed form, but we have not been able to obtain its inverse

transform. We note that the background process, nl(t), is quite small

with respect to the large noise amplitudes provided by the Hall compo-

I nent, hence the gaussian pdf appears as an impulse scanning function at



these large values of the argument y. Thus our model preserves the

hyperbolic tail (Lim p (y) cc 1/ym+1) of the Hall component to match
y-0oY

the observed large amplitude behavior of atmospheric noise. In most

practical cases, the resulting p (y) can be approximated as a sum of a
y

gaussian and Hall pdf; however, we have used numerical techniques to

evaluate p y(y) in section 3. 6. 2 below.

3. 3 Noise Envelope

To develop an approximation to the envelope pdf for a bandlimited

noise waveform given by (3.4), we begin with the definition of the joint

envelope and phase pdf2 9 as

Pv, ( ) = vp (v cos, v sin ), v2  y2 + Y,
Y, Y

(3.6)

ct tan1 y/y, y - Hilbert Transform (y).

In our case

y~n 1 +xan 2, y= n1 +xan 2,

where for n1, 2 gaussian narrow-band, n1, 2 are also gaussian narrow-

band and statistically independent. The quantity xa need not be hatted

if we assume that xa has no frequency overlap with n 2 , that is, it is

slowly varyirg with respect to the band-center Irequency. Thus the

envelope pdf is formally given as



Pv, )V ýa ýxp (vcos ý, vsin l,a,x) dadx

=Va P (...)" P a (TO" Px(g) dndga x y,yla,x

= vq - PN(O,cTG)(V cos •) PN(O, c.G)(V sin P) pa(,1) d-9
a

[ + vPa 'a PN(O,a-G)(V cvo - a) PN(O,ao' nH(aa) da

1" " 5 PN(v. SrG)(V sin -) PN(O, acnH)(a) dP Pa(a) da

[~q~v

SR(¶rG) + vP Sa PN (v cos ý -a) S N (Nv sin ~P

[ PN(aa) PN(aP) pa(a) dadadP. (3.7)

SThe last integral with respect to "al is similar in form to that leading

to (3, 3) and is recognized as Hall's expression for the envelope pdf of

his noise model. Expression (3. 7) suggests a iorm of the first order

envelope pdf (with phase random 0-27r) similar to that given for the band-

limited noise by (3. 5), if we identify the second term as a convolution of

fa Rayleigh pdf with the Hall envelope pdf. The second term of (3.7) does

not reduce to this convolution; however, we shall use this form as an

approximation to the noise envelope. This approximation then yields an

envelope and associated first order pdf;

v(t) = v(t) + x(t) a(t) v 2 (t), (3.8)

where vI(t) is Rayleigh (R(aG)) and v2 (t) is Rayleigh (R( vHii)), the pdf of
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a(t) v2 (t) W vH(t) is given by

Pv(v) = Ma Pv/a(V, Ti) pa( I) d,1

H -a
=S exp r 2 (m/2)m/2 - -
a 71 a 2nT] r(m/2). m+l

VH H

2v(m/ 2)m/2 2 2 + 1H 2
- 12xp'2vH 1 -n

V 2Hr(m/2) S0 iimexp 2 2Vd

m+2

v(m) 2 m

PvH(v) m+2 0 v < 0o, (3.9)

V2 + mG-2
V vH)/-

and the pdf of v(t) is

Pv(V) = qxR(%vG) + pxR (orv) PvH(TI). (3.10)

We note that this approximate model and resulting pdf for the envelope

provides the correct small amplitude behavior (Lim pv(V) Oc v) and a large

amplitude behavior following a hyperbolic tail (Lim p(v) 0C m--

3.4 Joint Channel Model

We can now combine the model for a bandlimited atmospheric noise

waveform, observed in frequency channel f I, the approximate envelope

model for frequency channel f2, and our assumption that a(t) is identical

in both models to determine joint channel characteristics. When x(t) = 0,

or the Hall noise component is very small (a(t) small) the background



-64-

gaussian noise component dominates both e .velope and rf noise densities

and the joint channel density is simply the product of the two since they

are statistically independent. When x(t) = I and the Hall component is

dominant, we can proceed exactly as in developing the envelope and rf

Hall noise densities ((3. 3) and (3.9)) to develop the joint channel pdf.

ThusL
Py, v(Y, v)) PyH, vH(y' v) = ýa py, vI a(y, v0 ) pa(,n) dn

I
=a pyI a(y°i) Pv l a(v,'?I) Pa(n1) d 1

20 2
exp2n2 ["v exp 2H21

nH 2crH ~ vH v

2(m/2)m/2
exp -m

m/2 m+2

(1~) r(m+1 ) 2 v2 2 m+3

nHO-vH~r(2) [ ) (17 ) 2 + m] m+3

(-oo < y < +0o, 0 <v <+oo. (3.11)

In a similar manner, the joint pdf for the Hall component of the envelope

in two disjoint frequency channels can be computed as1
1



m+2 -65-

(m) 2 2(M + 1) vV 2

PvHf (VI; v 2) m+4 (3.12)

1 2 2 22
T a' V2 +vHI vH 2  2 2

HvH1 vH2

From the joint pdf's and the single-channel pdf's we can determine the

conditional pdf of either variable. For example, the conditional pdf of

the rf noise, y, given a pilot channel envelope value vo0 is

Pyv (Y) Py, vo(YV0) Pv 0 (V

1

Oc m+3 (3.13)

2 2 T2
y o

nH v

Comparing (3. 13) to the unconditional pdf of y, (3.3) and the observed

data in Figures 2-5 and 2-6 we see that it has the correct form for

small values and large values of y, and that the conditional pdf tail

decreases by a power of two faster than the unconditional pdf. This

behavior will be considered in more detail in section 3.6. 3 below.

3. 5 First Order Model Statistics

3. 5. 1 Unconditional Moments

Inspection of the limiting large amplitude behavior of the Hall com-

ponent of the noise pdf's ((3. 3 and (3. 9)), given by



I
Lim py(y) = Lim PyH(Y) CC: -ET , (3.14a)

Lira p(v() = Lim PvH(V) 0: (3.14b)

V-C •O v V- 00 Vm+a

shows that both have unbounded first and second moments for m = 1 and

unbounded second moments for m = 2. These are the values of m re-

L quired to fit ell of utir observed data and we are thus faced with a situa-

tion of attempting to model a physical phenomenon with a model that has

I an infinite power level. Hall suggested this difficulty be overcome by

truncating the range of the inverse chi process, a(t). We shall simply

truncate the complete noise density at a value of ymax or v max which

jcorresponds to the upper limit of our observed noise density. This

truncation was the most convenient in our numerical comparisons of the

L model to the observed noise characteristics. In the case of realizing

the canonic atmospheric noise generator (to be given in section 3.8) in

a Monte Carlo computer simulation it is probably more convenient to

I truncate a(t). Since n 2 (t) is gaussian, the resulting distribution will

decay rapidly beyond such an a(t) truncation point and hence it is prob-

I. ably not of great practical significance which method is employed since,

S.as we shall find, practical signal processing structures are quite insen-

sitive to the exact probability of the large amplitude noise components.

I Distribution moments, the second moment or power level in par-

ticular, are well ingrained in engineering thinking due to their role in

linear systems and gaussian noise. However, for non-gaussian noise,

they are only two parameters of a theoretically infinite set required to

completely characterize an arbitrary distribution. In the case of non-

L
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gaussian atmospheric noise, they are only moderately informative, as

when the ratio of rms to mean value of the envelope, the so-called VD

parameter, 14 , 17,30 is used to characterize the degree of non-gaussianity

of the pdf. We shall find in Chapter 4 that a simple nonlinear system

will perform upwards of 17 dB better in frontal type of noise as com-

pared with gaussian noise of equal power level. Improved signal pro-

cessing structures of this type are sensitive to the nature of the noise

pdf in the low-to-middle amplitude region and almost insensitib' ? to the

large amplitude portion, while the latter in many cases can domiaate the

second moment or power level. For these reasons, as well as the prac-

tical one that measurement of the noise power level with analog instru-

ments is a very difficult proposition due to the dynamic range, we have

considered first and second moments of the noise model only incidentally,

after the model parameters b.ive been selected by other criteria.

Values of the i.-st and second moments of the rf and envelope noise

.nodel pdf's are given below for the cases of interest.

a) General

I yI = I n, +xan 21[ In Il + XjyHI

v vl= - xav2 -V*1 + xvH

jy2 .n1  + 2x 1I x22

v2 v;= n 2 v V+ X+ x2 Y2
-H.

Using T.1aussian/Rayleigh and Hall component pd.' with upper integration



I
, -68-

limits of Vmax and Ymax' the moments of (a) above yield:

S~b) re1,

2 pq
S.- 797 2 nG + _n r In n[Y a nH ] (3.15)

nG ___ 1y.TH
-n [2max 1]3.6

I v vG + 'vH In (3. 16)

ly 12HznG ln [ +ax nHymax (3.17)
'nG + P.'nHO'nG I nH + HTan GrnH J (317

I

max 2  (3.18)vHL (TvH j

S~c) m=2,

2(2""- 2anH 1 (3.19)• l ~YV = 797O'nG+P I•O-nH- Ymaxj!

V + P - vH (3.20)

lyj= 2 n- + (2.25) rxnOn p 2O- 2n 1 +In N-- ma
nG P-nGnH + nH nn

(3.21)

v 2 2T + 2 p 7T V vH+ p 4 " Hln Vmax" 3.39 2vG i G H V TvH •VHP

(3.22)

I
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3. 5.2 Condit.onal Moments

The second moment of the rf channel noise, conditioned by the value

of the pilot channel envelope, can be computed from the assumption that

x(t) a(t) is common to both channels,and the pdf of a(t), as follows:

ý yvxI 9 v o) dq 112 Y ('9) Pv(vo0) dilS'yl Pylv,x:0('r],o drI PY lpVo

T1 N 0 2 p (i]) dl= ]

2 nGbsy N (0, qnG )

the unconditional variance of the background component of the rf noise.

b) With x(t) = 1, the conditional variance of the dominant Hall

component is given by

$y PyHvH, X-O(qVo) d- 1 $y2 PyH, vH o)v dv0

pvH(vo) y

vI vo) 2y PyH, vHia(T1' Vo'PvHt(vo0) S

• Pa(t) dtdj

PvH(Vo) 2 a Pa

" PvHIa(Vo, t) Pa(•) dtdij.

Interchanging the order of integration and substitution of a gaussian pdf

for pyl Ia(9'9) yields



S! PyH vH, x=O(71, vo) dl = 1 PvHIa(Vo, 9) pa(g) -

PvH(vo) a

yS 1 PyHja(-, g) didt

- 1Ho ,a PvHI a(Vo' g) 2 '2nHPa(g) dg.
PvH (NVo

Substitution of a Rayleigh pdf for PvHIa(Vo , g) and the a(t) pdf (3.9) yields

(mM/2 2• \(') •nHVo a' __
2py~n x(71, Vo) dri T .~v.sI 2 PyH vH, X=O(D ) - S2 M+- VC 2 r/M\ 0o•÷

PvH(Vo) vH U2)

0V + VH)
exp - 2 2

2• •vH

m 0 v + 2 (3.23)

SvHm

These two results are conditioned on both the value of the pilot chan-

nel envelope, v0 , and the state of x(t), whereas the data, such as Fig-

ure 2-7, is conditioned only on v0 . Thus, these results are valid for

small and large amplitudes of the envelope, where one may infer, in a

Bayesian sense, the state of x(t) being 0 or 1, respectively. These

results are sufficient to describe all but a small transition region of the

conditional rf noise variance.

Using the approximation for the noise envelope (3. 8) and the
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Rayleigh and Hall component pdf's we obtain similar results for the

conditional second moment of thr joint envelope-pilot channel envelope;

a) with x(t) = 0

"Vpv 1 v 2 x=0(9 v2) dil = 2o-G2 (3.24)

b) with x(t) = 1,

2cr

122 dT1  v IH [ mr 2] (3.25)
v I 2 2

•V1 1 PV "l2H =(' v2 mO 2v2 H vv2H

We shall also compare the ratio of mean to variance of the condi-

tional Irf I chanm ] pd for the model and the data, as a measure of the

non-gaussian character of the conditional rf distribution. This is com-

puted from the joint y-v pdf (3.12), with m = 1, as follows. The use of

the upper limit of integration is not required here because the moments

are unbounded, rather it includes the effect of the maximum range of

the observations which affects the ratio of interest at large values of

the envelope.

2  Ymax 2 1 dq
0 PYHvH(11Ivo) pvH(vo)

[3/2 
tan -1 n Ym ax

I(Vo./0 vH)2 + 1 2 0*-ni[ H vo "vH

[ v2/o I
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a 2 /r +(3.26)

-nH Ymax/niH + vo/°TvH +1

2 '0 PyH, vH(1' Vo) Pv (
0 H' H (v 0)

[2 13/2rI2 -Vo + I

VovI [ vH + 1] [Ymax/ nH + vH+

(3.27)

3.6 Comparison of Joint Channel Model with Data

3.6.1 General Parametric Dependence

We have used the unconditiona.. probability densities of the rf noise

from frequency channel 1 and the envelope from frequency channel 2,

plus the conditional standard deviation of the rf noise, as the data base

{ to compare our first order model with observed data. The joint chan-

nel model, with parameters, is given by

tnG nH

[ yf1l= n1 (t) + x(t) a(t) n2 (t) .

I I

p x m

I I
Vf2 = v (t) + x(t) a(t) v2 (t). (3.28)

I Ii OvG OvH
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The parameter m determines the large amplitude behavior of the rf and

envelope pdf's (3. 14a, b) and must satisfy m > 0. We have restricted m

to be an integer which provides the simple generating mechanism for the

canonic atmospheric noise generator to be given in section 3. 8. The

parameter m is thus estimated from the slope of the observed density

tail on a log-log plot (see section 3. 1).

We found in section 3. 5. 2 that the conditional rf noise variance

is given by the variance of the background gaussian component, n1 ---

T 2G, for small values of the conditioning envelope. This variance is

then the square of the horizontal portion of the conditional standard devi-

ation plot as seen in Figure 2.7. The parameter px, the probability

that the two state process x(t) is in state 1 (x(t) = 1) can be estimated

from a simultaneous plot of the conditional rf noise standard deviation

versus the conditioning envelope, and the cumulative probability of the

envelope. The point where the conditional standard deviation begins to

exhibit a dependence upon the conditioning envelope is the envelope value

where x(t) must be in state 1 to introduce the dependence via a(t). The

intersection of this envelope value with the cumulative envelope proba-

bility is then related to ý as

Px = 1 - Pv (v'<v0 ).

The remaining three parameters, 0 vG' 0* nH' rvH' must then be

chosen to simultaneously provide a best fit to the two unconditional

probability densities and the predicted relationship between the condi-

tional standard deviation and the conditioning envelope given by (3. 23).
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3. 6. 2 Comparison Results

The general algorithm used to compare the model with the observed

joint channel data was the following:

a) Estimate the parameters m, 0"nG' and px from the information

given above.

b) Utilize the computer to numerically evaluate the two pdf convo-

lutions (given by (3.5) and (3. 10)) as a function of these three

parameters plus the three remaining parameters to achieve the

best simultaneous fit to the three data plots. This was an itera-

tive procedure in which we subjectively evaluated the data fit,

giving principal weight to the fit of the probability densities

through the middle region where the variance of the experimen-

tal estimate of the density was minimum (see Appendix B).

The results of our comparison and the required parameters are shown

in Figures 3-1 through 3-4 for quiet through frontal noise conditions.

We see in Figure 3-1 in the upper right plot the selection of the value

of x at the break point in the conditional standard deviation curve andPx

the corresponding observation that the noise is in a non-gaussian state

for only 10% of the observed sample record. In the lower right plot of

the unconditional envelope we note a major deviation of the observed

data from the predicted small signal behavior. This is not a charac-

teristic of the noise envelope but is caused by an instrumentation error,

a dc offset in the lowpass filter used to recover the envelope from the

The variables RF and E are data variables corresponding to model

variables y and v, respectively. lso, aT x and
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wideband linear rectifier. Since this error does not appear to seriously

affect the large amplitude behavior of the envelope, it was not considered

to be a fatal flaw in the data. Both the rf noise and envelope noise

model data comparisons show that the model does have sufficient flexi-

bility to reproduce the second large amplitude breakpoint which, as noted

in Chapter 2, is caused by the low probability-of-occurrence, non-gaussian

excursions of the noise waveform. Thus the model parameters (specif-

ically px, the probability that x(t) is in state 1, adding the non-gaussian

Hall noise component) can be chosen to provide a smooth transition of

the model to a purely gaussian noise waveform. On the conditional stand-

ard deviation plot, the line labeled "Model, (Y " is given by (3. 23),2 > o2  Te beakpintfi vf2

assuming v0 > m H. The breakpoint predicted by this relation (i. e.,

where that assumption does not hold) occurs approximately at the actual

data breakpoint, but this is not true for the other data comparisons so

that only the linear portion of the curve, dependent upon m, anH and avH

is shown. Finally, the moment statistics of the model and data are given

in the title block. These were computed from the relation given in sec-

tion 3. 5. 1, and we see that the model agrees quite closely with the data,

as we would expect from the generally good fit of the model pdf to the

data pd.

The data used in the comparison of Figure 3-2 was recorded during

a transition noise condition. The increase in propagation range of the

lightning discharge radiation at night provided a much higher geographic

density of lightning sources which is reflected in the px value of 0. 5 and

the disappearance of the second large amplitude breakpoint in the pdf

tails. The m value of 2 actually fits the tails better here than in the
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quiet conditions. This again is reflective of propagation effects; the

fewer discharges affecting the quiet data were local and hence had a

tendency to larger excursions which "mplies a shallower slope or lower

value of m. For the quiet-night data, on the other hand, the greater dis-

tance and the fact that more discharges tended to add together produced

the effect of a steeper slope in the tail. Again we note the generally

excellent match of the model with the composite data plot, and the indi-

vidual channel moments given in the title block.

The remaining two figures, Figures 3-3 and 3-4, show progres-

sively more non-gaussian noise conditions as reflected in the increasing

value of Px and the use of an m value of 1. Both of these data records

were made during local morning or afternoon and hence tend to reflect

dominance of individual excursions (x(t) = 1) by strong local discharge

radiation. Multiple discharges are also prominent during these condi-

tions as seen in the discussion of section 2.5.2. We note that the mod-

eling of the joint channel dependence continues to provide good results

in the conditional standard deviation plots. The unconditional envelope

model of Figure 3-4 is probably the worst data match that we obtained

with all of our records; this same behavior was found in both of the other

two 65 kHz records made during those conditions. The dc offset in the

lowpass filter contributed to this error, and it is also probable that the

sample record was not long enough (100, 000 samples) to collect a repre-

sentative sample of the long multiple discharges that dominate the frontal

noise conditions. This latter effect would not be so predominant in the

rf noise record due to the randomizing nature of the phase (or equiv-

alently n 2 (t)) in this data, hence the better match to the pdf seen in the

I
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upper left plot.

It can be seen that the observed noise conditions span, very nearly,

the full range of model parameter values. The frontal conditions, with

p = 0.9 and m = 1 represent the largest deviation from gaussianity

of which the model is capable. The quiet conditions, with Px = 0. 11 and

m i 2, approach gaussian noise conditions and one might assume that

even lower- values of px and/or larger values of m would be found during

temperate latitude winttvr weather.

A comparison of the noise model with data recorded at 14 kHz is

show.-. in Figure 3-5 for three noise conditions. In the discussion of

section 3.6. 1 we saw the intimate dependence of the choice of the Px and

0nG parameters with the joint channel dependency, which was not avail-

,,ble for these VLF observations. Thus the parameter estimation proce-

dure was considerably more difficult, and more important, the results

do not provide the same degree of uiiqueness in parameter values as

th-. for the joint channel data. For example, it is difficult to separate

the effect of cnH and p x using only the single channel data since these

two parameters enter in a product relation for large amplitudes, as

seen from the pdf expression f,)r the Hall noise component (3. 3) which

is scaled by p x in the pdf convolution of (3. 5). In a more general con-

text, if we considered that the observed probability densities were three

curves to be represented mathematically, there are lour parameters

involved, the first breakpoint, the following slope, the second break-

point, and the final slope (this assumes that the selected mathematical

expression provides the correct small signal behavior and that pdf nor-

malization, f+0_ Py(il) d1 = 1, provides an overall scale factor). Since
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our model provides four parameters, we cannot infer that it has any

unique aspects as a single channel model, only that it does have the

flexibility to match the data to the degree shown in Figure 3-5.

3. 6. 3 Comparison with Additional Joint Channel Characteristics

To provide further evidence of the validity of the joint channel model,

the conditional density of the rf noise was measured using a hardware

conditioning circuit. The rf sample was taken from frequency channel 1

arci the digitized sample stored in a holding register. This sample was

then written into the memory, becoming part of the sample record, only

if the next envelope sample from frequency channel 2 fell within a vari-

able threshold window determined by two level detectors. This technique

allowed longer sample records at a given conditioning envelope value

than were obtained with the continuous joint sample records previously

described. This increased length provided better probability density

estimate stability.

If we assume that the joint probability density of these samples was

dominated by the joint Hall component density, then the conditional rf

density is given by

%1
PYlVo (y' Vo 0" " PyH, vH (y' vo0)"PvHy(v y)

Using pdf expressions (3. 9) and (3. 11) and transforming to normalized

y' and v' variables via the relations y' = y/LnH and v' = v/O vH results

in the normalized conditional rf noise density for m = I
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Py' lv,(y"Vo) = 2 o'v<, <+00, 0 < y' <+00.o 0/ V12+v,2+ 1)2l

(3.29)

Four conditional sample records were used, each 8000 samples long,

with the value of the conditioning envelope, v0 , related between records

Sby a power of 2. The expression (3. 29) was matched to the second rec-

ord at y' - 0 and at a large value on the tail of the observed density.

This two-point fit provided a value of v 2 n, -1 n _< 2, for all of the0

records and the scale factor for y' relating the normalized coordinates

to the observed voltage scales. The conditional pdf (3. 29) was then

plotted for the remaining three records with the appropriate power of

2 change in vo. The comparative results are shown in Figure 3-6

where we have used two plots to separate the sequential values of condi-

tioning envelope. The normalization was performed relative to the plot

labeled 130 4 Ef 2 < 170 mv. It would appear from these data that the

joint channel model pdf does provide a useful description of the actual

behavior, in particular, the model predicts the sharp reduction in slope

t_ of the density tail, compared to the unconditioned rf noise density of

the previous figures in this chapter.

We have noted (section 3. 5. 1) that the ratio of mean to rms has

often been used to characterize the non-gaussian nature of atmospheric

noise envelope waveforms. This ratio for a guassian distribution is

0. 797 o-, while smaller values would indicate a pdf tail that is larger

than gaussian. Expressions (3. 26) and (3. 27) give the variance and

mean value of the magnitude of the conditional Hall noise component of
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our model, including the effect of the instrumentation system's dynamic

range. The limiting value of this ratio, for large values of ymax'

is seen to be

Expression (3. 27) 7T [VH1 2
Lim z.636.

Ymax-0 N/ Expression (3.26) (v2/,v2H + 11 /- 27

v 0V<< ymax LTovH tan

For the entire range of our noise model (i.e., background component

to Hall component), we would expect that the ratio of the mean to rms

of the conditional I rf I noise distribution is gaussian for small values of

the pilot channel envelope where only the gaussian background compo-

nent of the noise is present (x(t) = 0), decreasing to the lower Hall compo-

nent limit given above and then rising towards unity as the upper limit

Ymax is approached by the pilot channel envelope.

The Hall component ratio was evaluated numerically and found to be

relatively insensitive to the exact values of 'nH and crvH* The result is

shown in Figure 3-7 for the case m = 1, along with several plots of the

j. actual ratio computed from the joint channel data for m = 1 noise condi-

tions. We see that the data ratio follows the general behavior predicted

by the model, in particular, the increase towards gaussianity at small

values of the pilot channel envelope supports the concept of the back-

ground gaussian component of the atmospheric noise. The actual point

of this transition is dependent upon relative channels gains and hence

has no significance. The subscript at each rf channel frequency is the

observation bandwidth in kHz and we see that there is a definite trend



to lower values of the mean-rms ratio at the 10 and 20 ktlz bandwidths.

This indicates that the specific form of the joint channel pdf is less effec-

tive at these bandwidths, even though the particular data match used in

Figures 3-1 through 3-4 (conditional (rylv statistic) agrees quite well.

IR§.IEj -[RI,,E---• '"

.8 <GAUSSIAN / 65, FRONTAL

-- ' / MODELHALL COMPONENT

" --. , . /' __ 65, TROPICAL

"65 T
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UINCONDITIONAL ---•< 65, FRONTAL,MEAN-RMS/ / c IoTROPICAL 65,T

RATIO _ IO 0 oF

n'-9 n-8 n -,7 n-b n'-5 n!-4 n'- 3 t;-2 n'-I n* E ,o E n2

Figure 3-7. Comparison of Mean-RMS Ratio for Conditional
RF Noise Magnitude Density

3. 7 Noise Model Time Structure

tN

We have specified, at this point, the time structure of two c-ompo-

nents of our noise model. The gaussian processes nlIt) and n 2(t), in

the model

y(t) n Wlt + x(t) a(t) n 2(t),

\.. ik
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are assumed statistically independent, with each having jointly gaussian

statistics with correlation determined completely by the bandlimiting

filter's impulse response. Since we have specified x(t) as a two-state

process, it would be very difficult to specify a time structure of x(t) a(t)

that would generate sample records exactly like the type seen in Fig-

ure 2-4. However, the fact that we seek principally a model that is use-

ful in radio receiver design relieves a considerable amount of the problem

of exact specification of short-time structure. The reason for this is

that all VLF-LF receivers must employ sharp bandlimiting filters to

remove adjacent channel interference. Signals designed for these radio

systems must provide long observation times relative to these band-

widths 18,' 3 1 - 3 3 and thus a noise model that describes the average be-

havior of the noise waveform over these time intervals is adequate. Our

goal in this section is to postulate a time structure for x(t) a(t) that

approximates the observed behavior reported in Chapter 2 in the r oder-

ate and long-time sense and does not compromise the first order model

characteristics given in 3.6.

From the time structure observations reported in Chapter 2,

we recall that the bandlimited atmospheric noise waveform has a power

spectral density determined by the bandlimiting filter. Measurements

of the fluctuating power level of the noise (the estimates A(ti) closely

related to the x(t) a(t) model component) showed that it was essentially

uncorrelated beyond the filter correlation time, although secondary cor-

relations of 3-4 msec and 300-500 msec were observed and related to

mechanisms of the noise-generating process. In terms of the ultimate

problem of receiver design, these observations indicate that the first
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order pdf of the noise is the most important characteristic to be mod-

eled. Where the fluctuating noise power level is important due to assumed

signal characteristics, one can use the joint channel model to estimate

the instantaneous value to x(t) a(t) more accurately than an attempt to

exploit the small time structure component in the A(ti) series. Thus our

efforts in this section are directed at completeness of the model and the

development of a canonic model, including time structure, suitable for

Monte Carlo computer simulation, rather than an ultimate use of the

x(t) a(t) time structure in the receiver design problem.

3. 7. 1 General Time Structure

The proposed time structure of the x(t) a(t) component of our noise

model is the following:

a) The two-state process x(t) is Markov with transition rates X01(t)

and Xl0. The Xl0 rate is constant and chosen to provide the

short-time correlation of A(ti). The X0 1 (t) rate is stochastic

and controls the time intensity of the non-gaussian excursions

caused by x(t) = 1.

b) The stochastic rate X0 1 (t) is driven by a statistically independent,

two-state Markov process w(t) with transition rates L01 and ýLl0.

The •10 transition rate is constant and chosen to provide the long-

time correlation associated with multiple discharges. The t01

rate is also constant and is chosen to provide an approximation

to the magnitude of the long-time correlation observed in the

A(ti) record.

c) The process a(t) is a nonlinear function of x(t): a(t) assumes a
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fixed value, described by the random variable a with pdf given

by (3. 2), for each discrete transition of x(t) from 0 to 1. Each

succeeding value of a(t) is statistically independent of those pre-

S ceding.

t We see that the effect of our model is to describe each burst event,

at the output of the bandlimiting observation filter, as a noise burst of

I constant power level which is a random variable for different burst events.

The occurrence intensity of these discrete noise bursts is further modu-

I lated by a two-state intensity process, approximating the occurrence of

single discharge events and the near continuum of noise found in multiple

discharges. This type of model is similar to that originally proposed by

"Furutsu and Ishida10 and recently used by Coon9 in the development

of an analog noise simulator. Their approach used a train of Poisson

F- distributed impulses to excite the bandlimiting filter, with additional

burst packets of impulses described by a higher intensity Poisson pro-

cess to represent multiple discharges. Our noise burst model has a

[plausible basis in the leader structure of single discharge events which,

at frequencies of LF and above, tend to appear as a short burst of noise.

I. Where the burst energy is more time concentrated, we are simply

approximating the effect as a noise burst since we are interested in the

effects on a scale of milliseconds or longer. For the case of multiple

discharges, we observed in Chapter 2 that these events are character-

ized by an additive combination of a continuum noise burst and shorter,

Shigh intensity bursts. Our model tends to provide this behavior, with

the continuum noise approximated by the high intensity event rate and the

random variable "a", describing each discrete power level, causing
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large excursions to model high intensity bursts. The model implicitly

ignores the correlation of noise burst amplitude with time intensity as

observed for multiple discharges. This preserves the first order model

as presently developed.

3. 7. 2 Functional Form of the Model Time Structure

The assumed form of the time structure for x(t) a(t) now allows us

to determine the functional relationship of the A(ti) estimates to the

model and hence estimate the model parameters necessary to provide

the model with the experimentally observed characteristics. The A(ti)

estimates were generated by an integrate-sample-dump technique which

is mathematically equivalent to the system shown in Figure 3-8. We see

L,,,o.~~~~ _- F,,,t" ,nT

Y) Rectf er )Aver rCorreoton

R(OT) OfDRg- nT)R ()dT

T 2T 3T 4T 5T t

Figure 3-8. Equivalent A(ti) Generator

frorm the well-known relations among autocorrelation functions that we

can determine the form of the A(ti) time series autocorrelation by cas-

cading the effect of each autocorrelation function. To determine the

form of the autocorrelation of v(t) (where we neglect double frequency
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terms from the linear rectification of the bandpass y(t) waveform) we

utilize the discrete nature of the Markov x(t) generator to write

Rv(T) = P(xt=1) P (N=0) VP(T) + P (Xt=0) P0(N=O) VGp (T)

+P0 (N-even) -G + P (N-odd)vGv]
01J 10 G X01' 10

P(xt =1) P (N-even) VH + P l (N-odd) VGvH]

(3.30)

In the first term of (3. 30) P(xt=1) is the probability that x(t) = 1, which

is stochastic and slowly varying as determined by the second Markov

generator (3.7.1 -(b) above). P I0(NT=0) is the T dependent probability

that zero Poisson distributed transitions, at rate Xl00 occur in time T,

and 2 (T) is the autocorrelation of the Hall component envelope. The
vH p(T

function p v(T) is the normalized autocorrelation of a linear envelope

[detector driven by a narrow-band gaussian process. 3 4 The remaining

terms represent the other possible combinations of Poisson events at

time t + T given x(t) = 1,0 at time t. These terms may be regrouped

in order of importance to yield

XI 0 T -

Rv(T) = Px e P(T) + f

+ f 3 (V) + f4 (vG e-'0T) (3.31)

The first term then is dependent upon the variance of the Hall envelope

component, the autocorrelation of the noise envelope and the exponential
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decay of the P X0(N=0) term. The second term represents uncorrelated

averages of vH caused by x(t) transiting an even number of times

during time T, while the last terms represent much smaller effects.

Neglecting for the moment the time dependence of px(t), which will

be used to model the 300-500 msec multiple discharge effects and hence

will not affect the short term behavior, and assuming the p (T) function

decays rapidly to a pv(oo) value (valid for I kHz and larger rf bandwidths

with T > 1 msec), we see that the sampled autocorrelation values are

given by

R t(n) bnT+T -Xt e 0 T [1 - J~nT-TJ dR (T)Px t) e VHPv(00) " T dT
M " nT-T L H

R V(T) Rh(nT-T)

+ constant terms, n >, 1

X v~ (~) [(nT+T)\l '

RA(t) (nT) p(-t) • o)e + 0 + nT)

"+e -(nT-T)\ 1 0  + nT) 2 -nTX 10(nT +)

X 010 1 0 nX10

"+ constant terms. (3.32)

Thus the autocorrelation of the model A(ti) series is, for short-time,

deuendent upon first order amplitude statistics previously specified

(pt,) and v2) and an exponntial decay, with parameter Xi0 of the

Markov x(t) generator. Physically, the parameter Xl0 is related to the

average length of single discharge events, which is of the order of

1 msec. The exact choice of this parameter will be based on simulation
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results given in section 3. 7. 3 below.

"For correlation times nT >>_I the dominant short-time term ofx 10
(3. 32) will decay to zero and the A(ti) autocorrelation will be given by

R RAp(nT) = PP)P,(t+nT) VH + second order terms (VG - ),
t )H(3.33)

I where we treat Rh(T) as a unit delta function with respect to the slow

variation of p(t) p(t+nT) which will be of the order of hundreds of milli-

Sseconds. The first term of (3. 33) is the first term of the second square

brackets of (3. 30) where we have used the nT >) assumption to

neglect transients in the x(t) generator. The joint probability, P(x(t) =

1,x(t+nT) = 1), will only be influenced by the stochastic intensity X0 1(t).

To evaluate PP(t) P,(t+nT) we make the following definitions and

Sobservations concerning the Markov generated w(t) which controls X0 1(t):

a) w(t) is the state of the second Markov generator controlling

the x(t) intensity. w(t) has rate parameters •01 and "lo-

f

b) w(t) = I -X -- f 01
01 x = + x0

01 10

c) Pw = P(wt) =0 +0 qw P Pw
ýLOl + ýI0

k 10 + N01= l o/qw"

I.



d) The w(t) state equations are given by 2 7  -95-

p(w(T)=0) pW e k + qw qw(l0-e ) p(w(O)=0)

p(w(T)j= LwO (l-ek) w + + P(W(O)=I)

The p p(t+nT) term with nT , can now be evaluated using
x10

the discrete states of w(t) as

p(t) p(t+nT) = P(xt, Xt+nT = 1 wtWt+nT= 1) P(wt Wt+nT= 1)

+ P(xt, Xt+nT = I Iwt = 0, Wt+nT = 1) P(wt = 0, Wt+nT 1)

+ P(xtXt+n = I Iwt 1Wt+T = 0)

P(wt 10 wt+nT = 0) + P(xtj Xt+nT = I I wt w t+nT = 0) P(wt, wt+nT 0).

Using the chain rule for conditional Markov probabilities and the state

equations given above, the expression becomes

px(t) px(t+nT) = (Pf) 2 pw(q ekw T + n pw)÷ fxw(pw-qw e-T)

+. p wq- e-IT) + (ps )2 qw (p eknIT + q

This can be rearranged to yield

px(t) px(t+nT) = e- knT ((Pfx)2 Pw + (Ps)2 qw - p2)+ (33)

where

P e p(t) P f + qp
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We recognize the left term of (3. 34), which is the dynamic portion, to

f s
be the variance of a two state process with state values Px and pS and

probabilities pw and qw, respectively, while the right term of (3. 34) is

the average value squared of the process. Combining (3. 34) with (3. 33)

we havre the long-time behavior of the A(ti) mode] autocorrelation given

by

Ra (nT) = e-knT ]2 (V + second order terms (V2,

S~ (3.35)

The model time structure provides five independent parameters. The

first two, X10 and k = tL 1 0/qw are chosen to provide the approximate ex-

I. ponential decay of the data for short-time and long-time, respectively.

The difference in the form of these two decay parameters is caused by

the respective sources of the correlation. For short-time, the correla-

L tion depends upon the length of each noise burst which is the probability

of zero Poisson distributed transitions in the time interval nT, whereas

1 the latter depends only upon x(t) being in state 1 at the beginning and end

i. of the time interval, independent of the number of intervening transitions

or "path" of x(t).

f The remaining three parameters are related by two equations and

an inequality. The average probability of x(t) must equal that required

by the first-order model, f sp (t) = Pmodel " PwPfx + qwPx =(3x. 36)

The range of the x(t) probability can be determined from the data as a

normalized ratio

I.



2Px t2x(t)2 2

Px

Ri A,Data(10 msec)/RA, Data(oo) L RDATA, (3.37)

and finally, we have the normal probability constraint

s f0 < p l. Px 4 1 (3.38)

In selecting a parameter set to satisfy these relations, two cases

f
arise. The first occurs when Pfx < 1 and a non-unique solution exists.

We can arbitrarily select Pw = qw, which leads to symmetric Pfx and s

values. It can be shown that this choice minimizes the difference,
f s

p - px. for a given RDATA ratio. The parameters for this case are

pwqw=0.f5, _fx=__+ px+xRDATA_-__ S -_px4__RDAA_-_ .

(3.39)

fIt is also possible to arbitrarily assign pfx at a large value to repre-

sent the near continuum noise of multiple discharges, or find that (3. 39)

fresults in > for given px and RDATA values, in which cases the

remaining two parameters, pws Px are given by the solutions of

-Pf pf2 + p - 2px + RDATA p 2 + p-2 _ RDATA P2 = 0,
Pw-Px + Pw Px 2Px Px

f
s x -PxPw (3.40)

Px= I Pw

The equation set (3. 40) reduces to two linear equations for the second
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fcase where P.= I.- This is representative of tropical and frontal con-

ditions.

We noted in our discussion of the observed A(ti) sample record

(section 2. 5. 2) that the behavior suggests a slowly varying continuous

f modulation of a(t) combined with the uncorrelated fluctuations. The two-

state intensity modulation proposed here is a coarse approximation to

j this and one might wonder why not modulate the intensity of x(t) by a

continuous lowpass random process. We explored this idea through

1 computer simulations of A(ti) and found that the technique works well

for moderate values of p.. For the larger values of px , .6 < x < .9,

as required for tropical and frontal conditions, the nonlinear relation

between modulation of X10 (t)and px(t) introduced by the relation p =(t)

X0 1(t)/(X0 1(t)+X 1 0 ) makes it difficult to control either px or the effective

I correlation structure. The former effect then compromises the first-

[ order noise model which is very undesirable. For these reasons we

have concluded that a two-state or Poisson-Poisson model is the better

form, short of incorporating amplitude correlation with the time noise

burst intensity. Our model for x(t) a(t), then, yields a functional behavior

I.similar to that found in the experimental observations and can be relat -d

to the physical mechanisms of the atmospheric noise sources. Further,

the time structure parameters can be chosen in a manner consistent

I. with the first order model parameters and these choices do not depend

in an absolute sense upon moment statistirs of the first order model.

I In the next section we shall demonstrate, via a computer simulation,

that the combined first-order and time structure parameters lead to

simulated A(ti) sample records and autocorrelation that agree well with

observations.



3.7.3 Time Structure Simulation Results

To verify that the model time structure produces the type of beha-Vior

predicted in the previous section, and that the results are compatible

with the first-order moc'el parameters, a Monte Carlo simuiation was

run for several cases. The details of the complete atmospheric noise

simulation generator are given in section 3.8 and Figure 3-11. For our

purposes here, the x(t) and w(t) two-state generators were simulated

with uniforrai random generators mapped to an exponential pdf to produce

the time of the next switching event. Each A(ti) 1 -msec sample was

composed of the sum of five Rayleigh-distributed, statistically indepen-

dent, samples (R(WovG)), plus additional Rayleigh-distributed samples

R(a x vH) for the time period that x(t) = 1. The second Rayleigh param-

eter, ax, was generated for each x(t) 0-1 transition from a X(m, 1) dis-

tribution, generated according to (3. 1). All of the parameters in these

distributions were taken from the first first-order model parameters

summarized in Table 3-1 in section 3.8.

A simulated sample record of the A(ti) estimates is shown in Fig-

ure 3-9 with tropical first-order parameters and time structure param-

eters described below. Comparison of this record with Figure 2-7, the

observed A(ti) time series, shows a reasonable imitation, although the

distinct undu.ating behavior of the observed data is not present in the

simulation.

An autocorrelation of the simulated A(t.) estimates is shown in

Figure 3-10. The two decay parameters were empiric'ally selected to

produce the results shown there. Equations (3. 40) were used to deter-

mine the remaining three parameters as
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RDATA estimated by (3. 37) = 1. 22

f =s=
P = 99, - Pw= 0.66, - px 0.27.

Since the short-time decay parameter, 10, is independent of all other

parameters and our observations indicated that this decay was found for

all noise conditions, the empirical value of 850 Hz is similarly valid for

all noise conditions. The long-time decay parameter, RIO, must be

computed for each parameter set as RIO = 2qw, where k value of 2 Hz

is assumed to be representative of Aill multiple discharge phenomena.

The model time structure produces the results shown in Figure 3-10 for

all noise conditions except frontal where the large value of pX , combined

with the model's lack of amplitude correlation with xWt) intensity, pre-

vents a sufficiently large value of r 2 to match the observed autocorre-
Px

lation. All of the time structure parameters are summarized in sec-

tion 3.8 below.

3. 8 A Canonic Atmospheric Noise Generator

The combined first-order and time structure model for bandlimited

atmospheric noise, including the joint channel model, can be conveniently

realized for digital computer simulation. The noise generator is shown

in Figure 3-11, where the portion above the dashed line realizes the time

structure and a(t) of the Hall component, whei •as the lower realizes

the actual envelope or rf noise samples. The upper portion is iterated

each time the state of that portion changes, as determined by the random

event-time samples, TNXT. The nonlinear mappings from Random

Number Generators (RNG's) with uniform distribution (U(0, 1)) are
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conventional inversion formula which can be used when a desired pdf has

an analytic cumulative distribution from which the inverse mapping can

be obtained. 3 5  Other generator forms, such as the in-phase and quadra-

ture phase components of the bandlimited atmospheric noise waveform

can be similarly constructed. If one is interested only in statistically

independent atmospheric noise samples, without consideration of time

structure, the Hall component of either envelope or rf noise or the joint

samples of both can be realized with U(O, 1) RNG's and the appropriate

mapping. These mappings can be determined for the integer values of

m that we have considered in our first-order model, Figure 3-11 does

not show the truncation of sample values at the maximum upper limit of

Table 3-1. Canonic Noise Generator Parameters

QUI UT 65 10 1.8 2 1.07 0.98 1 .0 .. 1 9 2 0.11 0.11 O.l

QUist 65 1 2.6 2 1.19 0.96 9.06 0.4 92 0.11 0.11 0.11

Quist 83 1 2.22 2 1.62 10.30 92 J.9 120 0.11 U.o P.U.

r le•H1 65 1 1.21 2 1.66 1.30 10.9 12. 100 0.5 .75 0.6 0.5 1.0

MIGIKTr 83 1 1.34 2 2.71 3.04 L. 5.8 134 0.5 M.5 0.25 0.5 1.0

tKOPICIIL 65 10 0.6 1 2.51 2.12 76.8 63.; 250 0.75 ).99 0.'0,0.• 07,,

r.~rICAL 65 1 .54 1 2.31 1.91 57.0 47., . 250 0.75 1.99 0.27 0.66 0.1

rdOGrCAL t," 1 1.28 1 6.16 6.36 289 n.8 285 0.b k.99 0.2710.0 0..

fONOAL 10D 20 3.5 1 12.7 11. 2JO0 936 1000 0.9 .9, ).99 0.6 0.A

fONkAL 65 1 0.1 1 11.3 1.15 858. 18. 500 0.9 ).99 ).1b ý.,9 0.o

k-wNTLM 83 1 4.6 2 22.2 27.0 28"0 70 700 0.9 ).99 ).b 0.89 0.e

K•? 10 1 0.31 1 1.21 1.13 4.84 6.0 10 0.05 ).66 ).4, 0.5 A.U

11PICAL 14 1 0. 1 1.81 1.66 22.2 20.( 107 0.65 )46 0.44 0.5 1.0
flNb*L 10 1 F.05 1 13.52 3.33 10? 102 200 0.8 .99 0.15 0.0• 0.)

NOTES: %• * e, * I. M o ,- - _(

I.

I[
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the various pdf's. This can be accomplished either directly as the Hall

component output by iterating for a new value if the maximum is exceeded

or by limiting the ai generator range as suggested by Hall. While these

produce slightly different pdf's at the maximum range the differences

woud probably not be important in most simulation applications.

The parameters required by the model and canonic generator are

given in normalized form in Table 3-1. This table is a representative

summary of all of the sample records that we analyzed from the data

collection program in New Jersey.

3.9 Summary

3. 9. 1 Model Results

In Chapter I we briefly described the nature of electromagnetic

radiation from lightning discharges, which is the principal source of

low frequency atmospheric radio noise. The complex time structure

of these discharge radiations, especially at frequencies above 40-50 kHz,

provide motivation for a multiplicative model of the noise. y(t) = A(t) n(t),

as originally suggested by hall. This model describes the noise wave-

forms observed at the output of a bandlimiting filter, rather than employ-

ing the more difficult approach of statistically modeling the discharge

process itself and then determining the resulting filter output statistics

from this source model. We extended Hall's model by suggesting that

A(t) could be considered to be independent of frequency and thus provide

a statistical link between noise waveforms observed in different frequency

channels.

In Cahpter 2 we reported various experimental observations made
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at VLF and LF to explore what statistical and dynamic behavior of A(t)

was required to approximate actual noise waveforms. Chapter 3 has

developed two aspects of a mathematical model based on the multiplica-

"tive concept and compared them to the observed data to determine appro-

priate parameters. Our proposed model for bandlimited atmospheric

noise waveforms is given by y(t) = nl(t) + a(x(t)) n 2 (t), where nI(t) is a

. statistically independent background gaussian process, x(t) is a two-state

Markov process with a time-varying transition rate parameter and

a(x(t)) n 2 (t) is the multiplicative process given by Hall where the x(t)

[ process acts to "turn-on" or "turn-off" this Hall component in a partic-

ular manner. In addition, a(x(t)) is independent of frequency over signif-

icantly large frequency increments and is thus identically the same for

noise waveforms observed over this increment. This noise model repre-

-. sents a synthesis of three previously suggested models, including Hall's,

( with the addition of our concept of the frequency independence of a(x(t)).

Our principal comparison of this noise model to experimental obser-

I. vations was based on records of effectively simultaneous samples of the

noise envelope in one channel and the rf noise in a second, both in the

I LF band. We found that the model and associated six parameters would

satisfactorily describe each channel's unconditional probability density

and a conditional statistic's variation linking the channels. These

( six parameters compare to eleven parameters required to simply fit

mathematical expressions to all three curves. We further demonstrated

that the joint channel model (the fact that a(x(t)) is common) predicted

the basic form and relation of the conditional rf noise pdf measured

with a different technique, and predicted the basic relationship of a

t
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different joint channel statistic than used in comparing the model with

the data.

The basic time structure of our model, introduced to model the

observed dynamics of A(t), is provided by the stochastic nature of

the x(t) transition which acts to "turn-on" the a(x(t)) n 2(t) noise burst.

The average length of each burst is approximately equal to that reported

for individual lightning discharge events. This behavior of a(x(t)) pro-

vides a basically uncorrelated structure for A(t), with a small second-

order correlation extending over several milliseconds. The long-time

correlation observed of A(t) is approximated in the model by modulating

the intensity (Poisson rate parameter) of x(t) with a second two-state

process which corresponds roughly with long multiple discharge phenom-

ena. The model also provides the correct autocorrelation of y(t) itself

via the time structure of nI(t) and n2 (tI, although this fact is relatively

unimportant in typical low frequency signal processing design problems.

Finally, we interpreted the noise model relations in terms of a block

diagram of a canonic noise generator, suitable for Monte Carlo com-

puter simulations. This generator, together with both first-order and

time structure parameters, was used to demonstrate that a simulated

A(ti) time series yielded the same autocorrelation as that of the

data.

3. 9. 2 Additional Questions

The experimental program described here was, of necessity, an

attempt to collect specific data based only on the general concept of a

multiplicative noise model. The final form of the model in turn suggests



a number of more specific experimental questions. In general these

relate to the variation of the model parameters with band center fre-

quency, joint channel frequency separation and observation filter band-

t width. We suspect that the form of the model is applicable to much

higher frequencies than those tested here, principally because the leader

structure of the lightning discharges, which appear as a noise burst,

becomes dominant with increasing frequency. Appropriate questions

regarding joint channel separation might involve more precise measure-

ment of conditional densities at varying separations, using matched

filter envelope responses, and perhaps experimentation with other chan-

nel waveforms or the use of more than one additional channel.

Questions relating to the effect of the observation filter bandwidth

are perhaps the most important since this enters intimately into any radio

system design. We have used bandwidths of 1, 10, and 20 kHz and have

not found significant differences in the first-order model parameters at

these bandwidths, although the results of section 3.6. 3 indicated that the

specific form of the conditional rf noise density seemed less appropriate

at the larger bandwidths. A check of the absolute values of anG and anH

I.. used in the tropical model at 1 and 10 kHz showed that they differed by

approximately the ratio of the square root of the noise power bandwidths

of the two filters used. This is the result one would expect L'or a process

( that appeared as bursts of noise, relative to the filter impulse response.

Conversely, this would imply that one could scale the model parameters

given in Table 3-1 for differing bandwidths, usingthis bandwidth factor,

at least above 1 kHz. However, as the bandwidth is reduced significantly

below this value, the time width of individual discharges will approach

L.
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the time constant of the filter and clearly this will affect the model

parameters in a nonlinear manner since the lower limit of 3uch band-

width reduction must be a gaussian noise process. In terms of the quali-

tative changes in our model parameters, we would expect that the rela-

tive level of the gaussian background process would increase and the

value of Px would decrease with decreasing rf bandwidth. This means

that a noise pdf such as associated with tropical conditions would

trend towards that found for quiet-night or quiet with a decreasing rf

bandwidth.

This type of change in noise pdf is important in signal processing

design for, as will be seen in the next chapter, there is an 8 dB differ-

ence in signal-to-noise ratio improvement that can be obtained, with a

simple nonlinearity, for tropical as compared to quiet noise conditions.

Intuitively, the wider rf bandwidth preserves the effects of individual

discharges whereas the smaller bandwidth tends to blend the lower level

effects of these together, contributing to the rise in the apparent back-

ground level. In terms of signal processing, the lower level blending

"gaussianizes" the noise in those time regions and prevents the pro-

cessing structure from discriminating against the effects of the original

discharges. In general, then, one would want to use the smallest rf

bandwidth at which significant changes in the noise pdf's begin, and our

observations do not provide this information. However, since there

are relatively few changes in pdf character from 1 to 10 kHz, our noise

model and supporting parameter table does represent the "best" (in a

signal processing sense) noise characteristics one could obtain from

such an optimum bandwidth selection.
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In the next chapter we shall apply the noise model to the design and

performance dnalysis of a phase-locked-loop for use in low frequency

navigation systems. The predicted performance, based on the model,

will be verified using computer simulations and sample records from

various noise conditions.

I

I.
U.
I

I-



Chapter 4 -III-

AN OPTIMUM DESIGN FOR NAVIGATION RECEIVERS

One of the most significant problems in the design of low frequency

radio receivers is the development of a performance analysis and opti-ni-

zation which includes the effects of non-gaussian atmospheric noise.

This development requires a quantitative description of noise character-

istics. We have endeavored in the preceding three chapters to develop

such a quantitative model, with associated parameter sets, to describe

certain aspects of bandlimited atmospheric noise. We appealed at sev-

eral points in that work to our ultimate goal of developing a noise model

that was useful in the receiver design problem. This, for example,

justified our focus on noise characteristics at the output of the bandlimiting

filter and provided our motivation for development of the joint channel

noise model. In this chapter we shall use this model as a tool to analyze

several typical navigation receiver processors and to specify a near

optimum receiver.

We shall assume a linear signal generator model and use a sampled

data phase-locked -loop (PLL) as the basic navigation receiver processor

structure,with a linear time-invariant loop providing a performance

reference for our analysis. This loop can be optimized for the atmo-

spheric noise power level and for a statistically independent, gaussian

distributed noise sequence, such a loop would be optimum in the mean-

square error sense without restriction as to structure. We have seen

that a principal characteristic of atmospheric noise is that its first-

order probability density is not gaussian. To account for this we shall

introduce a zero memory nonlinearity in the loop and show that we can



determine the approximate performance of such a loop by using only the

first-order probability density of the noise model. We shall use the noise

model pdf to compare the performance of several nonlinearities such as

a hard limiter, clipper, and hole puncher to the optimum performance

achievable with this loop structure.

O,:r experimental observations have shown that not only is the first-

Sorder probability density of atmospheric noise non-gaussian, but that

samples of the noise, separated by a spacing greater than the bandlimiting

( filter correlation time, are uncorrelated but are not statistically inde-

pendent (this produces the correlation of the A(ti) sequence, in some

cases, of 0. 5 to 1 second). To account for this in the navigation pro-

cessor we shall use the joint channel noise model and the simultaneous

pilot channel envelope observations to approximate the atmospheric noise

I. as a gaussian process with a time-varying, random, power level. The

1 filter which is unconditionally optimum in the mean-square error sense

will then be given by a time-varying Kalman-Bucy filter. This filter will

I optimally compensate for the non-gaussian probability density of the

atmospheric noise and for the noise time structure and its interaction

I. with signal dynamics. Finally, all of these filters will be simulated on

a computer and, for two types of simulated stochastic signal processes,

the filter performance will be determined by using recorded noise se-

( quences for all types of noise conditions, from nearly gaussian to the

most severe noise associated with frontal weather systems. These tests

will show that the simple nonlinear loop, with a practical nonlinear

element, provides performance improvements of 6 to 16 dB compared

to the time-invariant linear loop, and that for loop time constants less

I.



than several seconds the near-optimum time-varying filter provides

further improvements of 3 to 5 dB over the simple nonlinear loop.

4. 1 Definition of the Problem

4. 1.1 Navigation Problem

Phase coherent navigation systems transmit radio signals from

two or more known geographic locations, where all of the system signals

are at least phase stable with respect to each other and today are often

synchronized to a universally accepted time-frequency scale through the

use of atomic resonance oscillators. A receiver or a mobile platform

receives a signal from each station which is given by

r(t) y(t)+B(t) si(n t + tt < x(), VO > dT+Zero Reference Phase

where y(t) is the additive atmospheric noise, t he vector inner product

yields a scaled platform velocity component perpendicular to lines of

constant transmitted phase, and the "Zero Reference Phase" represents

a reference geographic position in phase coordinates. The two types of

signal formats currently in operational use are time multiplexed (LORAN)

in which B(t) is a bandlimited pulse waveform which each station trans-

,nits at a prescribed sequential time at the same carrier frequency, or

frequency multiplex (DECCA, OMEGA) in which B(t) is a constant for

each station, which transmits at a different frequency. The engineering

of a complete receiver system of a given type is a complex problem

involving questions such as determination of the "Zero Reference Phase,"

acquisition, interference, noise reduction and the structure of an
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optimum geographic position estimator from received phase estimates.

We shall be concerned only with the problem of estimating the received

phase from one station when the received carrier is corrupted by addi-

tive low irequency atmospheric noise.

14.. 2 Signal Generator Model

f To model the dynamics of the received phase component perpendic-

ular to lines of constant transmitted phase, we shall assume that this

may be prepresented by a linear mapping from a vector Markov process

as follows:

a) Random phase process generator (s(t) in radians)

M(t) F s(t) + G u(t), E[u(t) u(t+T)] = Q6(t-T) radian2 , E[u(t)] 0,

b) Received phase,

sI(t) = [I 0 . . 0] s(t) = H s, H volts/radian,

c) Atmospheric noise process, y(t),

E[y(t) y(t+T)] = R(t-T) volts 2 , E[y(t)] = 0,

d) Received carrier and signal-to-noise ratio,

B(t) --21, SNR 1 R

( The matrices F and G can be chosen as a model of platform dynamics

plus oscillator dynamics. We shall consider only sampled data systems

in which the sampling interval, AT~is equal to or larger tian.the corre-

lation time of the bandlimited atmospheric noise process, whence

R(t-T) = RS(t-T). As we noted in section 3. 7, this is not a restrictive

I
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assumption since all low frequency receivers must employ bandlimiting

to remove adjacent channel interference. Thus the performance of con-

tinuous systems can be approximated by an equivalent sampled systenm

with AT set equal to the noise correlation time. For the case of LORAN,

a time multiplexed system, a sampled data model is an exact descrip-

tion of the receiver processing that must be employed. Using the state

transition matrix of the continuot s time signal model, 4(t, t ), the equiv-

alent sampled data signal model is given by3 6

s(k+1) = _(AT,0) s k +_I u(k) (4.1)

E[u(k) u(k)T] = Q AT '(ATT) G GT '(AT, T)T dT (4.2)

r(k+0) = H s(k+l) + y(k+1) (4.3)

y(k) - E[y(k) y(k+n)] = R6(k-n) = 2-. (4.4)

Specification of the continuous time signal process matrices F and

G (assumed time-invariant) then determines the equivalent linear differ-

ence equations (4. 1) tor the sampled data model and the covariance

matrix (4. 2) of the driving random process. We note in equation (4. 4)

that we have parametrized the noise power in terms of received signal-

to-noise power ratio, where the signal is the rf carrier, not the phase

message process s(t) which in general is nonstationary. This is the

sampled signal-to-noise ratio that one would measure at the output of

the antenna bandlimiting filter.



4. 1. 3 Signal Processing Structure

In considering signal processing structures, we shall assume that

the error in the local estimate of the received phase message is small.

Under this condition it is well known3 8 that a phase-locked-loop (FLL)

provides a statistically optimum estimate for the case of the corrupting

noise being white and gaussian. Most important for our purposes is

I, the ','act that such a PLL in sampled data form can be directly interpreted,

I via state variables, as a Kalman-Bucy linear estimator whichi brings

considerable insight and useful results to bear on our problem. The

majority of the research into PLL performance has been directed to-

wards analysis when the linearized assumption does not hold and prob-

I. lems such as acquisition, cycle slipping and threshold behavior become

1 the dominant considerations. In the navigation context, however, these

problems (except acquisition) are largely irrelevant because if cycle

[ slipping has any significant probability of occurring the phase estimate

becomes useless as a measure of position since one does not know which

I is the correct rf cycleor the Zero Reference Phase thus losing the

measure of absolute position. Our linearized restriction is, in fact,

the only case of practical interest in navigation receiver design. Our

I problem, for low frequency systems, is that the assumptior of gaussian

noise does not hold, as we have demonstrated in Chapters 1, 2, and 3,

and we require design and analysis techniques to specify an improved

or optimum signal processing structure for these atmospheric noise

I conditions.

For a sampled data system, the mixing operation of a PLL in which

the local reference is multiplied by the received signal to generate theI
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lowpass phase error is performed by sampling the received signal at

tne zearo crossing time of the local reference oscillator whose phase is

the estimate. If our local phase estimate is given by 9(t), the sampling

times are defined by solutions of

2(k+l)/ - ^I(k+1lk)sin (wt c+ "(t)) = 0 - t =

at which times the received signal samples are given by (using the small

error assumption)

r(k+]) = y(k+l) + sin (2(k+l)V + sl(k+1) - hI(k+l Ik))

y(k+l) + sI(k+0) - § 1 (k+1 jk)

We note that this is also the sampled loop error and we introduce the

following notational definitions: -'

a) A(k+1 1k); local estimate at k+1 using observations to k

b) N(k+l Ik) = ýNk+l) - 'S(k+l I k); local estimate error at k+1

using observations to k

c) z(k4l) = y(k+0) + 'S(k+lI k), actual error signal at k+1 using

observations to k

d) 9(k+1 Ik+1), local error at k+1 using k+1 observations.

The design problem now is to determine the transformation from the

sequence of loop error sampler, z(k+l) to the estimates s(k+l Ik+1).

We know that if the noise sequence is uncorrelated, then the linear time-

invariant minimum mean-square error estimator is given by tie steady

state Kalman-Bucy filter in which the error process is weighted and
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applied to a model of the signal generator as a correction. The signal

generator model state then provides the updated local estimate

s(k+ IIk+1), which in turn is mapped to the local estimate at the next

sampling time. These relations are summarized in Figure 4-1, which

includes details of the simulation to be discussed in sections 4. 5 and

4.6 below.

We see in Figure 4-1 that the loop error process passes through a

block labeled ZNL, Zero Memory Non-Linearity, and a possibly time-

varying gain matrix K(k+l). In the following sections we shall consider

the rationale for using the ZNL at this location and develop an approxi-

mate method of determining the complete estimator performance. The

time-varying gain matrix K will also be driven by a real-time computa-

tion of the matrix variance equation based on using the pilot channel

envelope sample as an estimate of the time-varying power level of the

noise sequence y(k+1). This estimator structure provides a near opti-

mum estimate in the minimum mean-square error sense (MMSE) with-

[ out restriction as to estimator class.

4.2 Optimum Linear Time-Invariant Estimator

4.2.1 Kalman-Bucy Equations

The experimental observations of atmospheric noise waveforms

reported in section 2. 5. 1 indicate that the noise process is uncorrelated

beyond the correlation time of the bandlimiting filter. Samples of this

process, with the sampling interval meeting this requirement, are

similarly uncorrelated. Thus, with the specified signal process model

and this observation, the MMSE linear filter is known to be the

I:
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Kalman-Bucy filter. For a gaussian noise process and our assumed

signal model, the Kalman-Bucy (K-B) filter is the MMSE estimator of

all possible types of filters. For our non-gaussian atmosphleric noise

process, the first-order amplitude statistics are non-gaussian and sam-

ples spaced beyond the filter correlation time are uncorrelated but not

statistically independent (our model attempts to describe the power level

Scorrelation of such samples). Hence the K-B filter is, in our case, only

an optimum filter of the linear class although it is easy to implement,

requiring only the signal model and unco elated noise assumptions plus

a measure of the power level of the atmospheric noise. Sections 4.3 and

4. 4 to follow will attempt to exploit the two differences noted above for

j atmospheric noise to improve upon the linear filter, although we will find

that design complexity increases accordingly.

i The Kalman-Bucy filter equation.- are listed here to establish nota-

tional conventions.

a) Continuous Time Equations

- i) Estimator

_(t) = F S(t) + K(t)[r(t) - H s(t] (4.5)

j ii) Gain

K(t) = _(t) HT R l (t) (4.6)_J

iii) Error Covariance

i(t) = F E(t) + .(O) FT - .(t) HT R- 1 (t) H(t) + G QGT (4.7)I
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iv) Steady State

K (oo) HT R-1 (4.8)

where E(oo) is a positive definite solution of

0 -- F (oo) + _(oo) F - _(oo) HTR H (oo)+ G Q G (4.9)

b) Sampled Data Equations

i) Estimator

(0 0 (AT, 0)) (4.10)

(sk+ IIk+1) = P $(kIk) + K(k+1)[ z(k+1)] (4.11)

ii) Gain

K(k+1) = E(k+l Ik+1) HT R- (k+l) (4.12)

iii) Error Covariance

Z(k+ IQk) = __(kik) _PT + G Q(AT) GT (4.13)

_.Z(k+1 [k+1) = _.(k+l Qk - _E(k+l I k) H T[R(k+I) + H T,(k+l [k) H T] -1 H E.(k+1 1k)

(4.14)

iv) Steady State

K = M(oo) HT R- 1  (4.15)

where EG(o) is a pou •ive definite solution of

_Z(-I HT R-I H + [0 Z(oo) _ T + G Q(AT) GT]I
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4. 2. 2 Sampled Data/Continuous Time Relations

We have included the continuous time equations above because it is

often easier to solve these steady state equations than the sampled data

equations. For reasonably dense sampling with respect to the estimator

filter's impulse response there should, of course, be a correspondence

between these two solutions. For the signal model, we have defined the

1. sampled equations in terms of continuous time parameters and hence

the correspondence is immediately established via F, G and Q. For

the white observation noise samples, we have a time series with a known

I variance, however, the variance of a continuous time white noise pro-

cess is infinite. The difficulty is that the definition of a white noise

I process in terms of an impulse correlation function is only useful in

[ terms of that .anctian's action on an integral ope:-ator. Thus we must

seek an equivalent white noise definition that results in the specified

[ noise sequence variance when acting over the sampling interval AT.

This can be done as follows:

y(t) N Ely(t) y(t+-)- Req&(T)

I AT
y(k) = y() dT

E[y(k)2 ] a R = E[ AT y('r) d T y(TI) d q

AT AT Req

1 T2 I R 6e (T -T 1) d yId T = "

AT2 'o . 0  eq AT'

I .. Req = ATR. (4.16)

I



-125-

This relation for the equivalent area of the continuous time white noise

correlation function will be shown in section 4.6.1 to yield results that

are accurate to better than 1% in predicting the steady-state behavior

of sampled data equations from the continuous time steady-state solu-

tions when AT is less than 1% of the estimator filter's time constant.

4. 2. 3 Relation to Classical Design Procedures

Classical design procedures for linear navigation PLL's 3 9 have

generally been based on a specification of a Type I or Type II servo loop

(single or double integrator, respectively) where the loop parameters

have been chosen to meet a transient response specification. Noise per-

formance has been evaluated via the noise power bandwidth of the result-

ing linear transfer function, assuming a white noise input. Our results,

when a single or double integrator signal generator model is specified,

can be related to this point of view by relating a given PLL bandwidth

specification to an equivalent noise model. This relationship will be

pointed out below when the two signal models are specified. The prin-

cipal advantage of our approach is that we bring to bear on the problem

many useful results and insights from modern communication theory

and, at the same time, prescribe an unambiguous method of testing the

performance of different receiver structures. This becomes important

when we consider nonlinear or time-varying PLL's where there is no

general relationship between a deterministic signal response, such as

an impulse response, and the performance of the loop when stimulated

by signal plus noise. Our testing procedure. will consis, of measuring

the error of various PLL structures in tracking a simulated stochastic
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signal in the presence of the recorded atmospheric noise sample se-

quences. In a classical context this parallels the technique42 of mea-

suring the small signal loop bandwidth by adding a deterministic wide-

band signal to a noise sequence and then estimating the signal content

at the loop output through correlation techniques, such as Fourier anal-

ysis.

[If one aýcepts the model assumption that the combined effects of

platform movement and oscillator dynamics can be described as a ran-

[ dom process (paralleling the classical requirement that the PLL have

a nonzero signal bandwidth) then our approach provides an objective

method of comparing the performance of various structures, specifying

[ an optimum performance, and testing these theoretical results.

4.3 Time-Invariant Nonlinear Estimator

4.3.1 Definition of Nonlinear Filter Class

In Figure 4-1 we indicated the general type of time-invariant non-

[ linear filter that we shall consider; the use of a Zero Memory Non-

Linearity (ZNL) in the path of the loop error signal followed by a time-

I. invariant linear filter to generate the estimate. The selection of this

j filter class can be qualitatively justified by considering the basic signal

processing problem. The phase message is a slowly varying process,

as determined by platform and oscillator dynamics, whereas the noise

is uncorrelated over milliseconds and statistically independent over

seconds. Thus we expect that any filter matched to the signal will have

a similarly long time &onstant and it would be desirable to limit in some

way the large amplitude etcursions of the noise prior to being weighted
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by the long filter time constant. Since by assumption g(k+l I k) is small,

the loop error is principally composed of the noise component and it

would seem logical to perform the nonlinear amplitude limiting at that

point, which is the ZNL location of Figure 4-1. A ZNL followed by a

linear filter with memory is Zadeh's class (Til) nonlinear filter and is

often used52 as a first approximation to a general nonlinear filter. In

section 4. 3. 5 we shall give a qualitative argument that the limiting form

of the optimum ZNL in our filter provides an optimum estimate in the

maximum likelihood sense and our experimental results will bear this

out. However, in the following sections we shall be concerned with anal-

ysis and optimization of this filter class which we have specified on an

intuitive basis.

4. 3. 2 Linearized Analysis

To analyze the approximate ZNL class filter performance, we replace

the ZNL, defined by f(z), by a gain normalized ZNL, f(z)/c, where c is

chosen as

9(k+1 Ik) f(z(k+1))
c "_ _ . (4.17)

I(kil 1k) 2

This choice allows us to define a new noise component at the output of

f(z(k+l)), as

n(k+1) c f(z(k+ 9(k+l Ik) (4.18)

which is orthogonal to the signal, 9(k+I 1k),
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[ f(z)

w2
5

The gain, c, is -Dooton's equivalent gain41 and the retention of the dis-

tortion as a noise term is an extension of Booton's method due to Caron.4 1

I.This type of linearized analysis of a given nonlinear control system

appears to be the most practical technique avaLlable 4 1 ' 54 and has be3n

I.used by several workers in analyzing PLL's operating in gaussian

noise.
4 5 , 5 3

Recalling our assumption that s(k+l I k) is small relative to the noise

I power, R, a further assumption that we will make is that the noise se-

quence at the output of the ZNL is uncorrelated, n(k) n(i) = 0, k * i.

[ This assumption requires that the uncorrelated atmospheric noise se-

quence, y(k), dominates the error sequence, 1(k), and that the resulting

ZNL output noise sequence n(k) dnes not couple significantly back to the

ZNL input. This assumption is equivalent to the qualitative condition.A

U 41listed by Smith as to when linearization of the nonlinear element can

I be used, such as requiring the bandwidth of the ZNL input to be signifi-

[ cantly larger than the following linear filter. If this assumption is valid,

then we can optimize any ZNL type filter by using the K-B equations

with a new noise power n(k)2 replacing the input noise power R. Fur-

ther, we can specify the optimum filter of this class by choosing the

. ZNL to minimize the noise power n(k)2. The filter, optimizec for a

given ZNL, can then be used to check the n(k) uncorrelated assumption

by comparing the ratio of resulting steady-state estimation error (the

!
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signal input to the ZNL, ý) with the atmospheric noise input to the ZNL.

Our results, both theoretical and those derived from tests,indicate that

the n(k) uncorrelated assumption is acceptable for most problems of

practical interest.

If we define a signal-to-noise ratio improvement factor

I. F. e SNRZNL OUT/SNRZNL IN'

then using the definition of a gain normalized ZNL and (4. 17) and (4.18)

we have

[2

. .F.f. (4.19)

L;JS f2 (z) 2- f(z)

If the assumption that n(k+l) is an uncorrelated time series is 'ralid, then

the relations between the I. F. and the performance of a system of oit

class, optimized in a specified ZNL, is given functionally as

t I.F. = g(R,2 s 1(00), p(z()) (4.20)

2  (co) = h(R/I. F., Signal Model), (4.21)

/where (4. 20) depends upon the first-order pdf of z(k+l) and Z11(co) is the

K-B steady-state solution (4. 15) using a new effective noise power,

R/. F. Thus, to determine the performance of the given estimator

class we can study the I.F. (4.19) for various types of ZNL's and predict

the resulting performance with a simultaneous solution of (4. 20) and

(4.21).
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If we assume the signal generator model to be controllable ard observ-

able, then the steady-state solution (4. 21) will exist and it will be a mono-

tone function of the effective noise power R/. F.36 The minimum mean-

square error of the nonlinear class we have specified ((oo)min ) will then

be provided by the ZNL which maximizes the Improvement Factor.

Hause4 0 has shown that the I. F. is maximizedat a given R/ s' , by the

Sconditional expectation ZNL which provides the MMSE estimate of "(k+ I1k)

given z(k+l) and is defined by

0+00

f(z) i ~p (n, z) di.
00 sz

JWe can study the I. F. of various ZNL's versus R/ 2 and compare

them to the optimum MMSE ZNL as a measure of relative ZNL quality.

I If the n(k+l) uncorrelated assumption is valid, we can also determine

the simultaneous solution of (4. 20) and (4.2 1) for a specific signal gener-

ator model from the evaluation of I. F. The resulting operating poin!

L solution will then provide an indication of the validity of the assumption

in terms of the ratio R/ s2.

4. 3. 3 ZNL Improvement Facto.'

I To study the ZNL I. F. for a given R/ s ratio, we must evaluate

(4. 19) which, in terms of the first-order pdf's is given by

.F[ (E[E[§ f(z)IlJ]z])2 1

I F,2 E[E[f2 (z) gz] - (Numerator) J
i
i
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R-- [L �pL () fz p ( 1-g) 071) d ) d ]2

O2 j ) f2 (9) py(•_-) drjdg - [Numerator]

where E[ . x is a conditional expectation wrt, x. Interchanging the order

of integration yields

R 
H z f(r 1) f P ~(9) dgd,1 2

L.F . = . _ --• 9_ " -s

-Z'2 [2 f f 2(.n P() Py(rp6-) dgd?1 - (Numerator)
S s

In this expression py(•) is the atmospheric noise pdf and p.(,) is the
y s

estimation error pdf. To proceed further we must know the latter pdf

which is formally related to the estimator structure and non-gaussian

observation noise by the Chapman-Kolmogorov functional equations. We

shall assume that this pdf ca.n be approximated by a zero-mean gaussian

distribution, an assumption that is consistent with previous assumptions

concerning the fact that '(k+1 k) is small, the estimator time constant

is long and that the ZNL will attenuate the large amplitude ex,-ursions

of the atmospheric noise so that no single noise sample wiln dominate

the weighted sum within the time constant window.

We now observe that the interior integration in the left term of the

denominator is a convolution that defines pz ) and that the interior inte-

gration of the numerator is proportional to the derivative of a gaussian

pdf convolved with the noise pdf. Interchanging these latter two linear

operations yields
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72 d

9 py('q-9 p (g) d9 -S -j p P(9 -t)p (g) d g

-Thus the right-hand term of I. F., the ZNL SNR, becomes

[ fz f(,n) PZ (n) d-n] 2

SNZNL = 1(4.22)

Z-2 P2(,i) d1  z , p•(,) d,] 2

I where p(r(n) represents the derivative of pz(') wrt its argument.

The ZNL SNR, (4. 22), is maximized by the ZNL which generates

j the conditional expectation of 9, which is

I I = iPj~z r Pzi,(z'") P•('j)

f(Z)MMSE n ps(qz) dn(z) d1

'n ii py(Z-,1) p(Jl) d,1

pz(z)

Using the gaussian assumption for p,.(,q) as above, this reduces toIs
i2 pz(z)

f(Z) MMSE s _, pz(Z) = py(9) p(2). (4.23)

pz(z) s

It can be shown using calculus of variations that (4. 23) does maximize

1 (4 22).

Recalling the definition of the atmospheric noise pdf (3. 5) we see

that pZ is given by



p(z) = N(03 ) ® [q1 N $Or2 + pN(O0' G P HTO

= q N(O 2 + :S)2+ p N (0, Or2 )P si) (4.24)
A 01nG + +ý) 0 PyH(1)" 4.4

For small values of z, the low amplitude gaussian component of (4. 24)

will dominate the pdf and f(z)MMSE from (4. 23) will be a straight line

passing through the origin, the optimum ZNL estimator for gaussian

signal and noise. For large amplitude values of z, the hyperbolic com-

ponent of PyH(z) will dominate and (4. 23) will yield a function behavior

d 1
2 _Pz(z) o--. dz zm mz (4.25)
Z z(Z) --) s-s - - I -Z 4.5

zz

Thus the MMSE ZNL has a small signal linear portion, reaches

a point of maximum value and decays hyperbolically for large z, irre-

spective of the integer m value of the atmospheric noise tail. We have

evaluated (4. 24) numerically and find that this general behavior is fol-

lowed, although the nature and position of the peak value is strongly

dependent upon the atmospheric noise weather conditions and resulting

pdf. We shall not consider f(z)MMSE as a viable candidate ZNL to use

in a practical estimator since one has to know a great deal about the

specific noise pdf. We shall use the SNRMAX produced by f(z)MMSE

as a comparison for practical ZNL's to be discussed below.

4. 3.4 Improvement Factor of Four Types of ZNL's in Atmospheric

Noise

A practical ZNL shold have two attributes, achieve near optimum

performance, and have parameters that are not critically sensitive to
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specific noise characteristics, or that can be adjusted in a noncritical

manner. The first and most obvious candidate ZNL Ls a hard limiter,

defined by

[ z >0I f(z) = (4.2)

I The hard limiter in this position in a sampled data PLL can be simply

realized by hard limiting the received rf signal at the output of the antenna

I. bandlimiting filter and sampling the resulting two-state waveform at the

time of the reference carrier (VCO output) zero crossing. This is not

exactly the same type of system that one obtains by hard limiting both

received signal and carrier (often termed bandpass limiting), multiply-

ing and then processing the resulting waveform with - lowpass loop filter. 4 5

One continuous time dual of the hard limiter that we are considering is

I.the use of the limiter, after lowpass filtering to recover the baseband

phase error signal, i.e., a bang-bang control system application. The

I. hard limiter ZNL does not have a parameter explicitly associated with

its transfer function, however, one must know the value of c, (4. 17),

I_ the signal suppression of the limiterso that the optimum loop gain,

!K/c, can be specified for optimum performance for a given signal model

and noise condition.

Two other types of ZNL's that have been proposed in the literature

are clipping and hole-punching, defined by

jzj IZ <Zt rz' , <
I f(z)clip = V z> Z f(z)hp= [, Iz>Z (4.27)

I<
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These two ZNL's are shown in Figure 4-2, along with the limiter and

the qualitative behavior of the MMSE ZNL as numerically evaluated

from (4. 23). The clipping and hole-punching ZN.T's have a single thresh-

old parameter to define their transfer function, and we must either carry

this as an additional parameter in the analysis or specify them as a

function of the noise characteristics. We have adopted the latter and

used a suggestion by Feldman 4 2 that the threshold be set so that a fixed

percentage of the samples, z(k+l), fall in the nonlinear region. This

behavior can be easily controlled by a long-time constant digital servo

loop that simply counts samples exceeding the threshold and then adjusts

the threshold in the correct direction at the end of each averaging period.

Thus the technique is not dependent upon a specific knowledge of noise

conditions; however, we must evaluate the I. F. for various noise con-

ditions to determine if the performance using this technique is insensi-

tive to noise conditions.

Substitution of (4. 23) into (4. 22) yields the maximum I. F. for a

given noise pdf,

( R (4.28)
(F)max 2 1, 2____

p dz- 1Pi2 pz (Z)

Substitution of the hard limiter characteristic results in a simple expres-

sion for the I.F.

1.F.h. - 1 (4.29)

s 4 p z(O)
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These I.F.'s, including the clipper and hole-puncher, were numer-

ically evaluated for all four atmospheric noise conditions of Chapters 2

and 3, and for gaussian noise. The results are shown inFig. 4-3through4-5

representative Zt percentages and the hard limiting and optimum cases.

Inspection of these results suggests the following comments:

a) The ZNL I. F. plots show only a 15% clip percentage. Perform-

ance was evaluated at 5% increments from 5% to 50% and this

percemtage was selected as providing the best I. F. over the

widest possible range of conditions. We note that the 15% clipper

provides near optimum performance over the widest range of

R/ s2 value of any practical ZNL. It is thus insensitive to both

the range of input signal-to-noise as well as being relatively in-

sensitive to the type of atmospheric noise.

b) Hole punching is clearly more sensitive than clipping to both the

type of atmospheric noise and the R/2 ratio. While it is pos-

sible to select a good hole punch percentage for a speciffed oper-

ating point, significant changes in conditions will render this

selection a poor one. Similar results for hole punching have

been reported by Kapp 19 and Griffiths 5 1 for the signal detection

problem. They plotted a measure of detection performance

against a single noise parameter and found hole punching exhib-

ited a much sharper performance peak than clipping (they did not

use our percentage-threshold technique).

c) Hard limiting performs quite well for most regions of low R/s

Notes: The straight lines on these plots are the functions (4. 21) for two

s'gnal models to be given in section 4.5; '\/R [2 1 I/R]-1/2.
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ratio where we expect operating solutions of the estimator struc-

ture to validate the n(k) uncorrelated assumption. In regions

where the hard limiter performance decreases rapidly, this un-

correlated assumption will also break down since the correlated

signal, ý, will cause a significant portion of the hard limiter

distortion (noise n(k)). This will in general make the actual per-

formance less than predicted by the combination of the I. F.

curves and K-B equations which assume that n(k) is uncorrelated.

d) Figure 4-5 also shows the variation of c (4. 17), with noise con-

dition, for hard limiting and 15% clipping. Following the develop-

ment of 4. 3. 3 it can be shown that this parameter is given by

c = - f(i1) pz (iq) d-q, Ch l.= 2P 2 (0) (4.30)

which, as noted, is Booton's equivalent gain.

Since the hole punching ZNL has distinct performance disadvantages

compared to the clipper and is only marginally easier to implement, we

have not considered it further in this research. In sections 4. 5 and 4. 6

the ZNL performance analysis developed here will be combined with a

scalar and two-state signal model to analyze ZNL estimator performance.

The predicted performance, based on the linearized analysis given here

will be found to agree well with tests using noise sample records and a

simulated signal process.

4. 3. 5 Opthnality. of ZNL Estimator Class

The ZNL I. F. curves given above share a common characteristic

in that for decreasing g2 /R ratio they approach a constant value for any
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ZNL characteristic. This value is determined by Lim p = p (z).Iz
'2

For the MMSE ZNL we see that this results in

-- Pz(z) - _Z-2
f(z)MMSE - __,2 - -s - -s ln (p (z)]. (4.31)Mpz(Z) p(Z) dz

[ Several workers 4 3 ' 44,50 have shown that this ZNL (4. 31), followed by

a matched filter, is the asumptotically optimum, weak signal detector,

for known signals in non-gaussian noise where noise samples are statis-

tically independent. It can be shown, combining Van Trees' 3 7 develop-

ment of a maximum likelihood estimate of a discrete parameter, s, with

g Antonov's 4 4 technique for a Taylor series expansion of the likelihood

ratio, that an asymptotic optimum estimate of a parameter s is given

by the ZNL of (4. 31) followed by an averaging function. Furthermore,

the large amplitude form of the noise pdf (3. 14a) satisfies Capon's con-

I dition5 5

I -0o y y

l to ensure that the resulting estimate s tends to gaussianity. We can

argue that our assumed ZNL estimator structure, feeding back the esti-

mate of s(k+1 Qk) to maintain - small, should provide an optimum esti-

mator structure for a long observation time where we can "open" the

feedback loop and consider the estimation of s(k+l) to be a sequence of

discrete parameter estimation problems. We have not obtained a formal

proof that the optimum ZNL class filter is aymptotically equivalent to

an unstructured optimum due to the difficulty of including a model for

I
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the signal dynamics within the loop. However, we shall find that the near

optimum estimate obtained with the use of the pilot channel information

and the time-varying gaussian noise model never improves upon the

error performance predicted for MMSE ZNL. We suspect that the

MMSE ZNL estimator provides the optimum estimate of all filters when

sufficiently dense sampling is employed and the noise samples are statis-

tically independent. For the case of non-independent samples, as is

found in several atmospheric noise conditions, the optimum performance

will be less than the MMSE ZNL estimator.

4.4 Linear Time-Varying Estimator

4. 4. 1 Use of Joint Channel Noise Model

We demonstrated in Chapters 2 and 3 that a useful model for a band-

limited atmospheric noise waveform is a time-varying gaussian process.

It is well known36,37 that the general time-varying Kaman-Bucy filter

provides the MMSE estimate of a rational spectrum signal process addi-

tively combined with a time-varying gaussian noise process where

ELy(t) y(t+T)] = R(t) 6(t-T).

The experimental sample records on which we have based our noise

model utilized the pilot channel envelope as a measure of the rf noise

variance. Equation (3. 23) gave the conditional estimate of the noise

power, conditioned by the pilot channel envelope value vo, as

2 1 nH [v2+mor2l (3.23)
yIvo,x= m 2 o vHi repeated

•vH
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for noise excursions above the background gaussian noise process. To

utilize the pilot channel envelope as a measure of the time-varying rf

noise power we stiali implement the following algorithm:

2

R(k) = 2k'y 2 (4.32)

k n1ln [v2l 0Lm T 2 0 0 vk > t

vH

I The threshold value of the envelope, vt, was selected as the intersection

of the relation (3. 23) with the c nG value as seen on the model-data com-

*1.parison Figures 3-1, 3-2. Therefore, v2 = mO 2G T 2 , T2
Vt n vH' •nH"

Both the joint channel model and the experimento] observations show

that the pdf of the rf noise samples, y(k), is not gaussian when condi-

I tioned on the pilot channel envelope even though the model utilizes a

noise process in each channel which is gaussian when conditioned on the

frequency independent random variable "a". If the model were an exact

description of the joint channel noise relations, one could use a better

estimator of a, 1v than provided by the pilot channel envelope. However,

the envelope was used, based on empirical evidence that it provided the

highest correlation coefficient with JRF k and hence we must adapt our

[ use of the joint channel model and time-varying filter to our experimental

records. To consider the effect of the non-gaussian pdf of yIv 0 we eval-

uated the MMSE ZNL Improvement Factor, as described in section 4. 3,

for the conditional distribution (3.11) with m = and found that a 3.35 dB

improvement was possible in estimating g given z. To reflect this pos-

j sible improvement in an ad hoc manner in the time-varying estimator,

I
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we utilized a clipper ZNL with threshold set, at each iteration, to plus

and minus three sigma of the sum of the estimate error and noise for

that iteration. This algorithm will be given in sections 4. 5 and 4.6

when we consider the actual simulations. Thus the algorithm that we

shall use to specify the time-varying power level of the atmospheric

noise sample sequence will not result in a precisely MMSE estimate •

the signal process since the conditional noise distribution is not gaussian.

The above computation and the ad hoc correction scheme should result

in performance that is within I dB of optimum.

4.4. 2 Performance of the Time-Varying Linear Estimator

The qualitacive effect of the time-varying power level on the estima-

tor can be understood by referring to the K-B sampled data equations

(4.12), and (4.13) and (4.14). The time-varying gain, K(k+l), responds

to each R(k+l) value in an inverse manner, thus attenuating samples,

z(k+l), that are caused by large noise excursions beyond the background

noise level. To the extent that we can associate an expected magnitude

a a1/2 -1I
with the R(k+1) estimate, Iz(k+1)1 =a . R(k+1)', we see that the R (k+l)

portion of (4. 12) provides a transfer relation quite similar to the MMSE

ZNL (4. 25): it is linear for R(k+1) < vt and decays hyperbolically beyond

this point.

The second time-varying term of (4. 12) introduces a dynamic be-

havior into the attenuator. This term, _(k+l Ik+I) reflects the growth

in uncertainty of the signal state at each iteration (4. 13) and the decrease

in uncertainty caused by optimal weighted observations (4. 14). When a

significant number of sequential observations are heavily contaminated
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by noise, the growth of _E(k+l Ik+l) will increase the weighting of subse-

quent samples that have a small noise co~ntamination. This increase

2
will be above the quiescent value caused by Rmin(k+1) = 0 nG and will be

a stochastic manifestation of the well-known fact 3 6 that a K-B filter has

a step response that is "faster" than a time-invariant filter equal to the

steady-state K-B filter.

Applying this description to our atmospheric noise model we see

that for quiet conditions where there is no significant multiple discharge

activity and the noise samples are statistically independent beyond sev-

( eral milliseconds, the time-varying estimator should have a performance

quite similar to the ZNL estimators. For heavier noise conditions such

[ as tropical and frontal, where the samples are not statistically indepen-

dent due to the multiple discharge activity, we would expect that the

time-varying filter's optimal compensation for this via M(k+l I k+l) should

j result in improved performance over the ZNL estimator.

To predict the performance of the time-varying filter we must de-

[ termine the average value of Z(k+l jk+l). From (4.13) and (4.14) we

see that this requires that we determine the first-order output statistics

of a nonlinear difference equation driven by a non-gaussian, colored

I process, R(k), as defined by (4. 31). There are no practical solution

techniques for this problem short of linearization of the equation and

approximation of the driving process with a gaussian process. Since

the actual driving process is very non-gaussian, this latter step would

I seem to make the approximation of questionable value. The one prac-

I tical answer that can be obtained is to place an optimistic lower bound

on the error variance by considering the steady-state error for a K-B

I
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filter with constant noise power Rmin = e., ignoring the effect

of all the non-gaussian excursions. Thus

-TW. V.( -RMIN()•

In the two simulation examples that we have explored, a tighter bound is

found to be given by the predicted MMSE ZNL estimator error. If this

ZNL filter does provide an asymptotic optimum estimator for statisti-

cally independent noise and long observation times (dense sampling wrt

filter time constant) as we suspect, then it follows that shorter observa-

tion intervals and statistically dependent noise, though processed in an

optimal manner by a time-varying filter, cannot result in better perfor-

mance than the asymptotic optimum. .

4.5 Test of Estimators for Scalar Signal Model

4. 5. 1 Operating Equations

The first signal model we shall consider is a scalar case with F = 0,

which is a single integrator. This model is useful for certain navigation

applications where the mobile platform uses a precision reference oscil-

lator and the single integration of the white guassian driving process

represents phase instabilities in the transmitting and receiving oscil-

lator 3 8 and a random velocity description of the mobile platform move-

inents. The sampled data description of the signal generator is seen

to be (equations (4. 1)-(4.4))

4(AT, 0) = 1, E[u(k) u(k)TI = QAT.

The sampled data estimator equations can be solved directly for steady-
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state to yield

QAT + V(QAT)2 + 4RQAT
Sl(°)= - 2

S4'1RQAT, R >> QAT (4.33)

QATF R

9(k+ I k+ 1) RT I "(kfk) + NF - r(k+ 1), R ~>)QAT.

S(4.34)

The estimator is thus a filter with a sampled exponential impulse response.

To relate our model to classical design techniques (section 4. 2. 3) one

j would specify a noise power level and filter time constant, Nf AT, and

determine the required signal model driving process variance, QAT,

I from

l R .37 QAT = R[l-.3711Nf]2

To determine the steady-state estimate error of the ZNL estimator

[we utilize (4. 32), the definition of the Improvement Factor and R to ob-

tain

/RAT RQAT 2SNR.- QAT

[ Zl = L•. ' I. F. - 2 - (•- R4o(4.35)

I where we have used E (k+l Ik). The equation (4.35) has been

I.



plotted on the ZNL I.F. curves, figures 4-3 through 4-5 for represen-

tative values of the SNR * Q product, with AT = 1 for convenience. The

intersection of these lines with the ZNL I. F. curves then represent a

graphical solution of the two conceptual relations (4. 20) and (4. 21). For

a given set of model parameters, Q, and SNR, one determines the esti-

mator operating point T_ IT, at this intersection, which can be con-

verted to estimation error variance in radians using R = 1/2 SNR. The

operating point for the linear time-invariant system is the intersection

of the Q • SNR line with the horizontal, 0 dB I. F. axis.

4. 5. 2 Simulation Technique

Figure 4-1 shows the general estimator block diagram plus the inter-

action with the atmospheric noise sample record. This sample record

is described in Chapter 2 and consisted basically of 10-second bursts of

nearly simultaneous samples of the rf noise in frequency channel 1 and

the envelope in channel 2. The sampling rate was 1 kHz and with total

length of approximately 105 samples. Only the magnitude of the rf noise

samples was recorded and this sample record was converted to a bipolar

record using a random number generator to assign a sign bit to each

sample. This provided an uncorrelated time series as the results of

ChaDter 2 indicated was appropriate for sampling intervals greater than

the bandlimiting filter time constant. A computer generated time series

of statistically independent, normal samples with unit variance, was

written "alongside" the atmospheric noise record to provide the signal

model driving process. As indicated on Figure 4-1 the noise and signal

samples were scaled by the appropriate factor as they were read from
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the magnetic tape for each simulation run to provide the specified Q

and R levels for that simulation.

For the linear time-invariant estimator, the loop parameters are

given by (4. 33). For the two ZNL types that were tested, 15% clipping

and hard limiting, (4. 34) was used with R given by

R= 1

2SNR• I. F. (Solution)

where I. F. (solution) indicates the I. F. at the predicted estimation error

operating point in Figures 4-3, 4-4. In addition, the c value curve,

Figure 4-5, was used by entering at the predicted %f;7T operating point

and reading the c/'"R value. The factor, 1/c, was applied following the

ZNL to maintain average signal gain through the device at unity. In the

case of 15% clipping, the threshold yielding 15% clipping, which was

computed in the ZNL performance analysis, was used and rescaled to

Ithe R value of each simulation. This threshold can be easily set by a

long-time digital servo loop as previously noted. This approach was not

I used here to allow use of the entire sample record for testing of the per-

I formance analysis. To recognize the fact that the ZNL estimator analysis

was only approximate, three simulations were run in parallel for the

I clipper and hard limiter with slightly smaller and larger loop bandwidths

than predicted (realized with a change in c value) to verify that the corn-

posite gain term, yielding minimum estimation error, was correctly

I given by the analysis.

For the time-varying filter, two parameters, q nGA Rmin and vt,

were entered for each noise record to describe the experimental curve,

1.
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0'.y(k) Ivo(k) These were related to R(k+l) by the algorithm of section4.4.1.

The time-varying value of K(k+l) wý,s then computed from (4. 12)-(4.14)

with Z(O 10) = 0 although this initial condition decayed so quickly with

respect to the sample record length as to have no effect. The time-

varying clipper, recognizing the fact that the conditional rf noise distri-

bution was not exactly gaussian (section 4.4. 1), was implemented as

Z(k+l1), [Z(k+l1)[ 14 3VE.(k+l 1k) + R(k+l1) et Z t
Z --1 (4.36)

Z(k+l) ±+ZT Z(k+'L, " ±ZT.

The complete simv_.:tion then consisted of four types of PLL esti-

mators being drio en by th i. same sample record of simulated signal and

recorded atmospheric noise samples. The resulting estimation error

was evaluated at each iteration as seen in Figure 4-1, with this error

used to plot the time evolution of the error and determine the error vari-

ance. The results of the scalar simulation for all noise conditions is

given below.

4. 5. 3 Simulation Results for Scalar Model

Four plots of the standard deviation of the estimate error are shown

in Figure 4-6 for the scalar model simulation. The effective noise im-

provement scale is computed from (4. 35). The upper right plot repre-

sents the widest effective estimator bandwidth tested and we see that the

time-varying filter performs slightly better under all conditions, while

the hard limit ZNL is defiately the poorest estimator form. Referring

to Figure 4-3, the hard limit I. F. for frontal noise conditions falls below

that of clipping at this Q SNR product and this fact is reflected in the
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simulation results. The other noise conditions, where the hard limiter

is poorer at this QSNR product, predict similar large separations in

the performance between hard limiting and clipping aad this is found in

the simulations.

As the estimator bandwidth is reduced by decreasing Q and SNR

(upper left, lower left, lower right in that order) we see that the per-

formance of hard limiting and clipping draws closer together, both pre-

dicted and tested. In the lower left, a crossover between clipping and

hard limiting is predicted and found in the test results. This is clearly

seen in Figure 4-3 for frontal noise conditions. The time-varying opti-

mum filter follows the best ZNL performance and generally exceeds it

slightly as the MMSE ZNL performance predicts. The least separation

between the best ZNL tested and time-varying is found in the narrowest

estimator bandwidth test, lower right. Here, the effects of noise power -

level correlation are erased by the long processing time involved. All

that is required is the proper ZNL noise limiting in the estimator, the

dynamic performance advantage of the time-varying filter is averaged

out by the processing time.

A plot of the time evolution of the estimation error is shown for two

conditions in Figure 4-7. In the upper traces, the time-varying filter

is seen to be clearly superior while in the lower plot the hard limiter

appears somewhat better. Both of these traces are plotted on the same

time scale, illustrating the differences in estimator bandwidth. We shall

defer comments as to the implications of these results for receiver de-

sign until section 4. 7. The results do appear to varify, at least for the

scalar signal model, the applicability of the linearized ZNL estimator
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analysis and this application of the joint channel noise model with attendant

concept of a time-varying gaussian noise process.

4.6 Performance of Estimators for Two-State Signal Model

4.6. 1 Operating Equations

The most commonly used signal model for the navigation problem

is two-state,M 0 1 s
= I+ u(t)

s2 (t)] 0 0 s2(t)J 1

a double integrator model. Physically, this form of signal generator,

models platform movement as a random acceleration and allows for both

phase (s 1 (t)) and frequency (s 2(t)) offsets between the transmitter and

receiver oscillators. The sampled data equations ((4. 10)-(4. 14)) for this

continuous signal model are

D (AT, 0) = e-(=T, (4.37) [
0

AT2/3 AT2 /2 0 0

E[ u(k) u(k)T, = Q ] ]

The sampled data steady-state covariance equations ((4. 13), (4. 14))

lead to fourth-order algebraic equations for this model and they cannot

be solved analytically. We therefore solve the steady-state continuous

time equations, (4. 9), to obtain
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If-" R 3/4 Q1/4 NrR "Q 4

E (0o) I K= (4.39)

%R %r R R1/4 Q3/4' R

[j R

The steady-state continuous time estimator is tCien given as

S4(t) - 4Q 1
1 R

A(t) + K r(t),

- • 0

which, when converted to a scalar tr, .. Zer function, is

42+ ý s-if

[ [ H(s) = [ 2 (4.40)

s + 2R

H(s) is recognized as a critically damped second-order filter as is usu-

ally specified for navigation PLL's. 3 9 Thus to relate our model to clas-

sical specifications, one need only solve for Q, for a given filter band-

width and noise variance specification,

4

4 Q -Q S
=/ Y2SNR

The steady-state estimation error and gain coefficients for the

equivalent sampled data system is obtained by substituting the results



of section 4. 2. 2 into (4. 39). For the phase estimate variance we obtain,

with the introduction of the ZNL Improvement Factor,

4-2-[ RAT ]3/4 Q./4•;ll(°°)1 = " IF.

(8Q • SNR • AT3)1/3 ¶

I.F. = -7-R_8/3 (4.41)

Expression (4.41) is plotted on the ZNL I.F. curves, Figures 4-3,

4-5, for a representative range of Q • SNR products, with AT again set

equal to one for convenience. These plots show that the two-state esti-

mator operating point lines have less slope than in the scalar case,

which is due to the coupling of errors between the phase and frequency

states (sI(k), s 2 (k)). We also note that a large spread of parameter

values is more concentrated in a region of the I. F. curves indicating

that there should be less change in relative estimator performance for

different ZNL's with this signal model. The sampled data estimator

for the time-invariant simulations is given by

!8Q SNR I.F.
g(k+lk+l) 1 AT] AT

1]A2Q " SNR I. F

s 2 (k+lIk+1) AT

.f(r(k+1) - sl(k+ Ik)); (4.42)
c



c = 1, I.F. = 1, f() = for linear; c, I.F., f( -) ZNL solutions for nonlinear.

Using the two-state sampled data signal model, (4.37) and (4.38)

and the time-varying covariance matrix recursions (4.13) and (4. 14)

we can determine the sampled data covariance recursion as

.[Ii + 2ATE•12 + AT2E.22 E 12 + ATE 22

- I 21 + Q2AT (4.43)

E..12' r(k+l Ik) = _(k+l k),
13 21 12

r 1 1 R(k+1) r 1 2R(k+1)

rl + R(k+l) r11 + R(k+l)

S2(k+1Ik+l) - (4.44)

r21R(k+l) rllr2 r r2 +r 2R(k+l)
21_____ 11 22 12 22R+1

Sr + R (k+l) r11  + R (k+l)

.rj = rij(k+lIk), r12 r 21'

j Note that here we are using the actual sampled data model based on the

physical continuous time system and hence use QAT and R as the signal

driving process and noise variance, respectively. The recursions (4. 43)

and (4. 44), which cannot be solved analytically for the steady state Z2(Oo)

value, are required in the time-varying filter to compute the gain K(k+1).

This gain is computed for each sample iteration from (4.43), (4. 44),

and (4. 12). To verify that the approximate sampled-data/continuous

relations, in conjunction with (4. 39), yield the value to which (4. 43)
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and (4. 44) converge, they were iterated n:u-erically using a sampling

interval

AT=21T -A,

where N is the number of samples per unit of filter time constant. The

actual iterated values of the o(0o) matrix agreed to within 1% of those

given by substituting Req = RAT into (4. 39) for N >, 100.

4.6. 2 Simulation Technique

The simulation technique used for the two-state signal model was

essentially that given for the scalar case. The estimator recursion was

given by (4. 42) with the appropriate ZNL parameters determined by the

graphical solutions of (4.41) with the I. F. curves. The same mapping

from E(k+l) to R(k+1) was used for the time-varying filter, with the

estimator equations given by (4.43) and (4.44) plus the general K-B

equations. The time-varying clipper was also used as per (4.36).

4.6. 3 Simulation Results for Two,-State Model

The standard deviation of the phase estimate error is shown in

Figure 4-8, in the same format as used for the scalar model results.

The three plots are for decreasing estimator bandwidth, upper left,

lower left, and right, respectively. In the first plot, we note the mag-

nitude of the error is such that we cannot conclude that the small

*(k+l I k) assumption holds and we must interpret this as merely an

extension of the linear model to determine the effects of bandwidth ver-

sus the noise conditions and estimator structures.
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A general comment that applies to all of these results is that the two-

state model, with its coupling between phase and frequency state errors,

produces many instances of significant deviations between linearized pre-

dictions and actual results. We attribute this to the state coupling and

the effect of multiple discharges in the atmospheric noise record that

reduce the information content of long sample sequences. In all of the

frontal noise simulations the optimum time-varying filter performs at

least 3 dB better due to its improved dynamic response and optimal

weighting of uncontaminated samples. This improvement is also seen

in the tropical noise record recorded in the afternoon (right-hand set of

points) as compared to the morning. These two records yielded essen-

tially the same joint first order analysis and model parameters, yet the

particular time structure differences of the two sample records produced

these simulation differences.

We note also in these three simulations that the discrepancies be-

tween linearized predictions and actual test results are reduced for

decreasing estimator bandwidths (increasing observation intervals) as

we would expect. Thus the quiet-night conditions, which we noted in

Chapte: 2 exhibited a long-time correlation in the A(ti) estimates, pro-

duced a performance difference at the largest estimator bandwidth which

disappeared for the other two bandwidths. A similar comment applies

to the right-hand (afternoon) tropical noise record. The cross-over in

the hard limiting versus clipping performance for frontal noise, pre-

dicted by the ZNL I. F. curves and observed in the scalar simulations,

does not occur for the two-state model although again the differences

°,



decrease with decreasing estimator bandwidth.

In contrast to these observations, we see that the quiet noise condi-

tions, which had no significant multiple discharge activity, produce

results agreeing with the linearized analysis for all signal models and

I Q/SNR conditions. We can conclude then that the performance prediction

discrepancies are directly attributable to this noise time structure

wherein successive samples are not statistically independent, although

uncorrelated.

Two representative plots of the time evolution of the estimate error

are shown in Figure 4-9 where the relative differences in performance

given by the error statistics can be seen.

J The results of the two-state simulation indicate that the linearized

ZNL analysis is valid for most noise/signal conditions of interest, although

I, this begins to break down for short estimator bandwidth relative to the

noise time structure. Using (4.43), the upper left simulation has approx-

imately 50 samples per estimator time constant, which for the 1 kHz

j sampling rate used for all of the noise records corresponds to a 50-100

msec observation interval. We recall from Chapters 2 and 3 that mul-

tiple discharge phenomena have typical lengths in the 200-400 msec

region. Thus significant growth of signal state uncertainty (refer to

section 4.4. 2 discussion) can occur during such a noise burst which is

Snot optimally compensated for by the ZNL estimators,or, reflected in the

linearized analysis. Corresponding samples per time constant figures

for the other two simulations are 200 and 628, indicating that the effect

of multiple discharges becomes progressively less significant with the

I

I
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performance results noted. The general improved performance of the

time-varying estimator again validates the joint channel model concept

and also indicates under what noise/bandwidth conditions the use of this

model and filter results in significant performance improvement. Gen-

erally,this improvement is significant for more complex signal dynamics

and/or observation intervals that are comparable to,or less than,the

longest interval of noise statical dependence.

4.7 Summari and Remarks

4. 7. 1 Summary of Navigation Receiver Desijgn Results

In this chapter we have considered the problem of estimating the

phase of a received rf carrier when the observations are corrupted by

additive atmospheric noise. The phase of the rf signal may be consid-

ered as a random signal process representing the geographic position

of the receiver relative to the transmitting station. As such, this prob-

lem is the most fundamental sub-problem in the design of a navigation

S.receiver. A linearized approximation to the sampled received phase

f was used, and three types of estimator structures were considered; a

linear time-invariant estimator matched to the received noise power

and signal model, a time-invariant estimator using a zero memory

nonlinearity (ZNL) acting on the loop error signal to attenuate large

I noise excursions, and a near optimum time-varying estimator utilizing

samples of the noise envelope from an adjacent frequency channel as a

measure of the time-varying power level of the received noise.

j The performance of the ZNL type of estimator was analyzed by

I
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replacing the ZNL with an equiva'ent gain and replacing the received

noise with the difference between the ZNL output and actual error signal.

For the case of a small error signal, this loop could be optimized through

the use of a linear time-invariant estimator following the ZNL, which

was matched to the effective noise power at the ZNL output and the sig-

nal model. This approximate analysis allowed complete estimator per-

formance to be specified from an analysis of the ZNL based on the fi-st-

order pdf of the noise and error bignal. This analysis was carried out

using the first-order noise model from Chapter 3. Four types of ZNL's

were analyzed in this manner, the optimum (MMSE) ZNL, hard limiter,

clipper and hole puncher. Based on this analysis two types of ZNL's

wei a considered most practical for actual use, a hard limiter and clipper.

The performance of the third type of estimator, the time-varying

Kalman-Bucy filter, c-'uld not be quantitacively analyzed due to the non-

linear dynamic covariance eL:Ations involved. The qualitative operation

"of the loop was discussed and shown to provide essentially the same

behavior as the ZNL in terms of attenuating large noise excursions and,

in addition, providing a dynamic compensation for the loss of signal

information during large atmospheric noise bursts. An optimistic lower

bound on estimator error was related to the variance of the background

component of atmospheric noise which is of constant power level and

uncorrelated between frequency channels. A more practical lower bound

was suggested to be that predicted by the MMSE ZNL estimator, although

a formal proof of this conjecture was not obtained.

Four estimator structures, linear time-invariant, hard limiting,

clipping and "me-varying were simulated on a computer. Actual
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atmospheric noise sample records were used to provide the noise com-

ponent and a computer-generated gaussian random process was used to

represent the signal. The results of these simulations showed that the

linearized ZNL analysis, based on the atmospheric noise model, pro-

vided quite accurate predictions of actual performance. Where the actual

error variance was found to be greater than that predicted, the optimum

I time-varying estimator generally provided improved performance, ap-

proaching the optimum predicted. The conditions required to realize

1.this improvement over a time-invariant ZNL estimator were complex

signal dynamics (a two-state signal model as compared to a scalar) and

an effective estimator time constant, or observation interval, on the

same order, or less thanthe longest time interval of correlated noise

statistics, approximately 0. 5-1 second. These application results verify

our hypothesis from Chapters 2 and 3 that the most significant charac-

teristic of atmospieric noise is the first-order pdf, with the noise-burst

time structure of second- or third-order significance. Where the latter

is, or thought to be, important, it can be optimally accounted for through

the use of the joint channel noise model and the concept that the noise
I

waveform can be modeled as a time-varying gaussian process, which

leads to the optimum time-varying estimator.

4.7.2 Remarks on Receiver System Design

Prior to offering some general conclusions on the suitability and

t realization of the three basic types of PLL's we have studied, we shall

consider two related topics.I
I



a) Other ZNL:s. The generally excellent results we have obtained

in analyzing three specific types of ZNL's, operating in all types

of atmospheric noise conditions, suggests that other ZNL types,

of interest in a particular application, can be similarly analyzed

with confidence in the resulting performance predictions. The

use of the ZNL Improvement Factor and noise model parameter

sets provide the designer the tools necessary to do this.

b) RF Bandwidth Effects. If we compare the effective noise reduc-

tion factor from the plots of simulation results with the changes

in normalized rms noise level given in Table 3-1, we see that

the best ZNL estimator will achieve a performance nearly equal

to that caused by the background gaussian noise component (except

for the severe and atypical frontal noise conditions). In other

words, the estimator will be nearly insensitive to increases in

noise level caused by changing weather/noise conditions. We

recall from section 3. 9. 2 that the effect of reducing the bandwidth

of the rf bandlimiting filter is to increase the apparent back-

ground gaussian noise component for increasingly severe noise

conditions (px increasing). Thus, the ZNL estimators will not

maintain constant weather/noise performance with rf bandwidths

significantly less than 1 kHz. Rather they will tend towards the

degradation in performance seen for an ideal, linear, time-

invariant system. While our experimental investigations have

not identified the rf bandwidth at which these effects become

significant, our application results, based on the noise model,

indicate the largest effective noise reduction one can obtain with



an optimal bandwidth selection,since,there are no significant

changes in either model or application results for bandwidths

larger than I kHz.

4. 7. 2. 1 Linear Receivers

A general result from the analysis and tests of navigation PLL's in

this chapter is that one should not employ a wide dynamic range, linear

PLL, for signals corrupted by atmospheric noise. Where the other

j important aspects of a design problem (such as interference suscepti-

bility4 7 , 51) dictate the use of a linear type system, some sort of clipper

-. nonlinearity should also be employed. Our results show that this pro-

vides near optimum operation for most signal-to-noise ratios, signal

models, and types of atmospheric noise. As we have noted, the imple-

jmentation of the adaptive threshold clipper that we have used is quite

easy, although any similar type of threshold setting procedure would

probably perform nearly as well. The only other parameter required

in such a system to achieve optimum performance for a given signal

model (or alternatively, in a classical context as defined in section 4.2.3,

to maintain a fixed loop bandwidth) is the effective noise power, which

can be estimated from the variance of the ZNL output sequence. Thus

an intuitive arid reasonable modification to a basic linear PLL will pro-

vide near optimum performance for atmospheric noise.

4.7.2.2 Hard Limiting Receivers

The great attraction of a hard limiter ZNL, as we have employed

it here, is that the PLL can be almost entirely realized with digital

heeIsetrl iia
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circuits. A stable analog oscillator, low level preamplifier, and limiter

circuits are the only analog elements required in the general case, although

other variations such as analog feedback to a voltage-controlled oscillator

can be employed. The hard limiting receiver provides near optimum

performance in most cases, especially those with longer observation

intervals which are the cases of greatest practical interest. Another

advantage that is often associated with hard limiting PLL's is that they

do not appear to require automatic gain control loops (AGC). However,

this is not quite the case. The function of AGC in the linear receiver

(with or without clipper) is to stabilize the effective loop error gain (K)

at a prescribed value which is optimum for a given signal model and

noise power, or in the classical design sense, results in a prescribed

loop bandwidth. The hard limit PLL requires exactly the same sort of

information for exactly the same purpose, namely, the effective gain c

of the limiter ZNL and the effective signal-to-noise ratio to specify the

optimum loop gain, K. We see from the expressions (4. 29) and (4. 30)

defining these two parameters that they depend only upon the probability

density of the loop error process, z(k+l), evaluated at zero, pz(0). This

can be estimated in a practical application by using a window discrimin-

ator with a small but finite widthcentered at zero voltsand a counter.

This would determine the average occupancy of this increment, by the

input analog waveform, at the VCO zero crossing time (sample time).

*While hard limiters tend to be self-adaptive over a limited range4 5' 48

this variation does not result in optimal compensation nor does it con-
sider the additional problem of adaptation to the changing character of
of atmospheric noise.
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Thus, a hard limiting system can be designed to provide near optimum

performance for most atmospheric noise and SNR conditions without

sacrificing realization simplicity. A "choice" between a hard limit or

linear-with-clipping type PLL for the navigation application would seem,

then, to depend upon factors other than the atmospheric noise perform-

ance that we have investigated.

4.7.2.3 Optimum Time-Varying Receiver

The optimum time-varying PLL that we have considered in this work

is definitely more complex than either of the two ZNL types, requiring

both the co-channel envelope information and small digital computer to

compute the covariance propagation and resulting time-varying gain,

K(k+1). The latter capability is often found in modern receiver systems,

especially integrated navigation systems that combine inertial platforms

or Doppler radar systems with radio aids. The co-channel information

can be provided by a relatively unsophisticated algorithm to determine

j the two points on the vyiv curve that were used to establish E(k+1) -

R(k+l) mapping. Such an optimum system should provide excellent

adaptibility to any type of atmospheric noise condition found throughout

the world. However, there is very little performance advantage in the

system for estimator time constants greater than several seconds, and

these are the ranges of greatest practical interest. We conclude, there-

fore, that the principal use of the optimum structure based on the joint

channel noise model has been to demonstrate the degree of optimality of

other, more practical systems, over the range of s;ignal and noise con-

ditions that we have investigated.
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Chapter 5

SUMMARY AND SUGGESTIONS FOR FURTHER WORK

5i1 Surmmnary

The work reported here has involved three distinct phases; experi-

mental observations, mathematical modeling, and use of the model in

a practical design problem. As we have stressed at several pointsthe

end use of the model is an engineering tool, and this has provided moti-

vation and guidance as to approximations and characteristics that were

more, or less, important in the previous efforts. Three significant

results of the experimental and modeling efforts can be summarized

as follows

1) The model provides a first order probability density for a band-

limited atmospheric noise waveform or noise envelope, and a

first order joint probability density for similar waveforms

observed in disjoint frequency channels.

2) The time structure of the noise model approximates at least

one important aspect of the long time statistical dependence of

atmospheric noise waveforms (beyond the correlation time of the

bandlimiting filter).

3) Comparison of the noise model with extensive measurements

of bandlimited atmospheric noise shows that the model matches

important noise characteristics over a broad range of noise con-

ditions. This comparison provides a table of model parameters

describing this range of noise behavior.



The use of the atmospheric noise model in this work was restricted

to a specific problem and considered only certain sub-specifics within

that problem, such as the type of zero memory non-linearity to use in

{ a filter. A discussion of these details is given in Chapter 4. On a

broader level we believe there are two significant results from this

application of the noise model:

1) A useful approximation for atmoshperic noise is to consider

samples spaced beyond the bandlimiting filter correlation time

I to be statistically independent. Under this assumption the first

order probability density, for all types of noise conditions, pro-

I vides the information necessary to determine the performance

of various types of receiver structures. This independence

assumption and use of the first order model yielded the ZNL

Sfilter analysis of Chapter 4.

2) The joint channel noise model and the concept of modeling the

I.noise as a time-varying Gaussian process allows one to deter-

mine the near optimum performance of a receiver- operating in

all types of atmospheric noise. Even if such a design would not

be considered practical for implementation, it provides a funda-

mental limit for comparison with other simplified designs.
/

5. 2 Suggestions for Additional Work

5. 2. 1 Noise Model

As noted at the end of Chapter 3 the most significant questions for

further experimental research on this type of noise model involve fre-

I quency dependent effects. The most important would be a determination
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of the effect of rf bandwidth on the model parameters. While our

results are for relall ely broad bandwidths that allow one to deter-

mine the maximum performance improvement possible with atmo-

spheric noise, a designer must know at what point bandwidth reduction

begins to penalize tiese improvements. Other significant questions

might be listed as follows-

1) Explore the joint channel model in more detail at VLF where

the impulsive return stroke is more important than the leader

noise burst.

2) Determine the effectiveness of the noise model at frequencies

above LF. Since the noise at these frequancies is increasingly

dominated by the noise burst properties of the discharge, we

would expect that the model would be increasingly effective.

3) Determine the effect on the joint channel model of separation

between chunnels at VLF, LF, and above.

The measurement suggested here could probably be most conveniently

made by an instrumentation system using frequency shifting techniques

to standardize filter shapes at the intermediate frequency. We avoided

this approach in our work because of the difficulty in realizing extremely

wide dynamic range multipliers to accomplish the shifting operation. Our

results show that the application of the noise model is not critically sen-

sitive to the large noise amplitudes and hence a system of reduced dynamic

range that introduced a zero memory distortion (no memory over the

sampling interval) at these amplitudes would not seriously compromise

the resulting data analysis and modeling.
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5. Z. 2 Application to Communication Receivers

The low frequency electromagnetic spectrum accommodates a

greater number of digital communication systems than radio naviga-

tion systems. Most of these digital signalling schemes employ bit

lengths of the order of 20-50 msec. This time period, the length of

the observation interval in which the receiver must decide which of

m signals was sent, is in the range where we found that the optimum

waveform estimation receiver offered the greatest improvement over

simple non-linear processing techniques. We suspect that similar and

perhaps more dramatic improvements are possible in the digital re-

ceiver detection problem.

Just as in the estimation application, the model of the noise pro-

cess as a time-varying Gaussian process provides immediate application

of the general results of detection theory that include time-varying

Gaussian power levels. In the simplest form of detection problem,

deciding whether a known signal is present or not, we can draw the

form of the optimum detection receiver directly from the insight pro-

vided by the joint channel noise model. In Figure 5-1 we see in the

upper portion a basic correlation receiver for this problem. The

received waveform, r(t), is correlated against a replica of the trans-

mitted signal and the result integrated over the observation interval to

form the test statistic. The block labeled f(z) is a linear transfer

function in the linear form of the receiver, which implicitly assumes

I



o-- -- 1?'7-

0

w

0)

Si •

14

0

zz

oio

II-C

I 0

3F x 0

I (4I 4

---- oi
_: ,• o)

_. _ • o
. . < C.o

-2 . a)z-zo • l



1 -174-

"the atmospheric noise is white and Gaussian. In typical atmospheric

noise applications this function is a clipper or hole puncher or, it can

be specified in a more optimal manner using the results of various

studies 4 3 , 44, 50 concerned with the optimal non-linearity for statis-

tically independent samples of non-Gaussian noise. The decision

threshold is then determined from the criterion to be used3 7 (Bayes,

Neyman-Pearson, Min-Max etc) and the effective noise and signal

power. These latter parameters must be calculated in a manner simi-

lar to the analysis used in Chapter 4 for the ZNL estimator. One mould

use the first order pdf of the noise (thus using an ensemble average

of noise waveforms for that noise/weather condition) and compute the

signal suppression and the effective noise power at the output of f(z).

The lower portion shows the nearly optimal use of the pilot chan-

nel noise information. The pilot channel filter, F 2 (f), is specified to

have exactly the same lowpass envelope response as the signal channel

filter Fl(f). This eliminates the problem of time offset found in our

L "worst-case" noise observation of Chapters 2 and 3 and should pro-

vide better correlation between waveforms than our experimental

We note that the atmospheric noise component, y(t), has a correlation
. function determined by the bandlimiting filter, F 1 (f). However, this fil-

ter is used to remove adjacent channel interference and hence r(t) can-
not be "whitened," the y(t) component must be treated as white noise by
the receiver.

I
I
I
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results. The non-linearity, g(v), realizes the inverse of the E(k+l) -

[R(k+l)]1/2 mapping of Chapter 4 so that the output can be directly

applied to the indicated multipliers. This results in an effective

received signal, rt(t), that has a nearly constant power level and a

nearly Gaussian noise distribution (see section 3.4). This waveform

is then correlated against a new s(t), s'(t), which reflects the effect

of the scaling waveform derived from the pilot channel. The result

may then be clipped by a fixed threshold f(z) to include the fact that

the joint channel noise model is an approximation and the effective

noise power component of r'(t) is not exactly Gaussian (this parallels

the time-varying clipper of Chapter 4). After integration across the

observation interval to form the test statistic, the decision is made

using the effective signal power, si, received during that interval and

the nearly constant noise power of r'(t).

The duality of the estimation problem of Chapter 4 and the detec-

tion scheme proposed here is evident. The time-invariant ZNL design

and analysis uses the same assumptions and type of first order pdf

analysis. The optimal time-varying detection receiver parallels the

time-varying estimation receiver in the following ways; the inverse

scaling operation attenuates noise excursions in the same way as the

estimator's use of R- (k+l) information (section 4.4. 2) and the compu-

tation of effective signal power for each observation interval optimizes

the decision threshold for that interval just as the time-varying estimator

optimally weighted each sample via the .I(k+l Ik+l) term of the gain

matrix K(k+l).
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We suspect that the optimum detection receiv.r will provide greater

improvements than the optimum estimator tests indicated because of

the short observations intervals, between which the atmospheric noise

waveform is very non-stationary, and the fact that the estimator test

records were based on samples spaced 1 msec apart, whereas the

detection receiver can make effective use of much higher information

rates. We also note that the optimum detection receiver employs principally

analog multipliers which can be easily realized to operate at these VLF

I and LF frequencies. Extension of the suggested detector to actual

FSK signalling schemes should be straightforward. We can also en-

vision further uses of the joint channel information, for example, to

"flag" bit decisions which have a high probability of error based on the

actual signal-to-noise ratio for that observation interval. These flags

L could be employed in following decoders for error correction or retrans-

mission requests.

I
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Appendix A

INSTRUMENTATION SYSTEM

A.. 1 Introduction

This appendix provides a general functional description of the instru-

mentation system used to collect information on atmospheric noise for

this research. Detailed circuit schematics of the equipment are not

( provided, although measured performance characteristics of certain

critical circ-uits are given.

The general functions of the system can be categorized as follows:

i) Receive and process low-frequency atmospheric noise wave-

forms in the frequency region 14 kHz to 100 kHz.

ii) Sample and digitize the processed waveforms according to a

prescribed timing sequence.

iii) Record the resulting digital data in a manner consistent with

computer input facilities available.

In meeting the above functional requirements, several performance

categories were important. The fi-st of these was to provide a dynamic

range in the analog circuits consistent witn that of the anticipated atmo-

spheric noise waveforms. This range has often been observed in excess

of 100 dB; however, this equipment, due to restrictions in the practically

achievable dynamic range of high speed analog-to-digital converters (A/D)

is designed for 80 dB in nonlinear processing circuits and 100 dB in pre-

ceding linear circuits. A second major consideration in the analog cir-

cuits was to insure that the atmospheric noise-waveforms were not

obscured by man-made interference, either communication signals trans-

mitted throughout the frequency region of interest or noise generated
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within the equipment. The latter may be either random noise in the low-

level analog circuits or digital switching noise generated in the timing

circuits, and hence synchronous with the sampling patterns.

Within the digital portions of the equipment the principal performance

requirement was the generation of a wide variety of sampling/data hand-

ling patterns, varying from a maximum rate of 100 kHz to a minimum

rate of 0. 1 Hz. A second major requirement was the capability to inter-

face this wide variation in data acquisition rate with the data recording

device.

A final major performance specification was the inclusion of an

operator interface system that provided rapid and flexible adjustment

of system parameters and the accurate monitoring and display of vari-

ous signal levels so that the available system capabilities could be

individually optimized for each data sequence. This overall performance

is especially important when we recognize that the atmospheric noise is

stationary over a period often measured in hours and that a wide variety

of sample records had to be collected within that time frame to charac-

terize the noise under those particular conditions.

An overall functional diagram of the equipment is shown in Fig-

ure A -1. A sub-functional description with associated performance

measurements is given in sections A. 2 and A. 3 for the analog and digital

portions, respectively.

A. 2 Analog Signal Processing

Low-frequency atmospheric noise fields were received on a one-

meter loop antenna manufactured by Aerospace Research Inc. A single-
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turn primary, coupled to a seven-turn, secondary transformer, drove

a low-input impedance preamplifier via a series resonating capacitor.

This circuit provided a single pole response of approximately 60 kHz

bandwidth that was tuned to either 100 kHz or 36 kHz. The antenna pre-

amplifier had an equivalent noise voltage, referred to the input, of

8.5 nV/NH"z. This level was approximately 6-10 dB below the back-

ground atmospheric noise component, at 100 kHz, as determined by

visual observation of the respective waveforms on an oscilloscope. The

preamplifier output was matched to a 100-ohm, balanced, transmission

line which also supplied amplifier power.

The signal was then coupled to an array of L -C notch filters to re-

move large amplitude communication signals present throughout the low-

frequency bands. These filters were provided by the U.S. Coast Guard

Electronics Engineering Center, Wildwood, N.J., and exhibited maxi-

mum notch depths of 60 dB with notch widths at the -3 dB points of 2 kHz.

The notch filter output was coupled, via a balanced line, to a differential

input FET amplifier followed by a broadband operational amplifier and

bootstrapped twin-tee notch filter to remove a strong hiterfering signal

at 18 kHz, which was outside the tuning range of the L-C notch filters.

The composite performance of the analog system to this point is shown

in Figure A-2.

The received noise signal, with man-made interference reduced to

manageable levels~was then coupled to several types of bandpass filters

to establish the various noise frequency channels of interest. At the

outset of the research, two single-stage bandpass filters of a balanced

Butterworth type were used for this function. The center frequency and
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bandwidth of these filters could be conveniently changed with a plug-in

resistor-capacitor network. The inductors used were the same high-Q

pot core types used in the notch filters, and they permitted a maximum

filter Q of approximalely 500. As the research progressed and certain

frequency channels were selected as providing representative data, these

filters were specialized to fix-tuned, multi-stage types of the Tchebycheff

or Lerner characteristic. Figure A-3 shows the frequency response of

the various filters.

The bandlimited noise waveforms could be connected to any combi-

nation of four processing channels; two wideband amplifier/samplers,

or two linear rectifiers followed by lowpass filters or integrate/hold/

clear circuits. The latter provided wideband noise envelopes or the

A(ti) sample series discussed in Chapter 2. The wideband samplers

were conventional diode ring bridges constructed from matched quads

of Schottky barrier diodes. The ring was driven by two dc coupled,

pulsed current sources of 6 00nsec nominal width, included a current

balance adjustment and a variable delay adjustment. The sampling gate

analog input was driven by a low-impedance, wideband, operational

amplifier and had a net slew rate at the holding capacitor of 24 volts/

ý±sec. This rate, coupled with the fact that the samples were taken every

10 ýtsec and the noise waveform was correlated over at least 50 jisec,

guaranteed tracking of the samples over the full ±10 volt dynamic range

of the analog system. The two diode bridge current adjustments allowed

independent balancing of the "on" currents and the turn-off transient

caused by both sources not turning off at exactly the sa _e time. This

balancing reduced absolute offset errors in the resulting sample to 1 mV.
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The linear rectifiers utilized germanium diodes in the feedback loop

of an operational amplifier to provide a linear range of 16 dB when prop-

erly trimmed. The rectifier output was connected to a two-stage, 3 dB

ripple, Tchebycheff lowpass filter with 20 kHz corner frequency to recover

the envelope from the rf noise waveform. This was fed to The wideband

sampler when envelope sample records were required. The rectifier

output was also connected to a gated integrator to generate the A(ti)

sample. The input to the integrator was disconnected by an FET switch

at the end of the integration period and the output held for 25 •sec for

A/D conversion, followed by a 75-•sec clear period when the feedback

capacitor was discharged by a second FET switch. This "service period"

was a fixed 100 ý±sec for any specified integration period.

The four possible sampled signal sources could then be connected

to the A/D converter via four FET switches and a wideband buffer ampli-

fier with 300-nsec settle time. These switches could be programmed

to scan the signal sources in any periodic set of 1, 2, or 4 sources. The

switch states were decoded from digital control sequences and the

switches were activated at the beginning of a 10-ý±sec sample/digitize/

store time block so that transients had decayed prior to initiation of

A/D conversion. The A/D converter was an Analogic AN-2715M, 15-bit,

successive approximation type with total conversion time of 8. 5 iLsec in

our application. The digital output was in parallel l's complement and

was converted to sign and magnitude prior to storage.

The entire analog system was connected via an FET signal multiplex

array to a monitor system. Any signal point (e. g., sampler input,

sampler outp-,t, rectifier output, etc.) could be selected for monitoring,
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resulting in signal availability at a front panel jack for oscilloscope dis-

play and processing by a metering circuit for average value of the signal

magnitude and peak signal value. These parameters were displayed

via a front panel digital voltmeter. The peak value circuit used an FET

input threshold detector that provided acquisition of a 10-Rusec, 12-volt

pulse to 5% accuracy, with a hold time-constant of 10 minutes. The

( combination of the average and peak value circuit allowed the operator

to monitor these two parameters of the wide dynamic range atmospheric

noise waveforms to optimize the use of the A/D converter dynamic range.

The meter system was also used for calibration of dc offsets through-

out the analog processing system. In addition to this analog monitoring,

front panel lights displayed a 2-second pulse whenever any of the analog

circuits following the L-C notch filters overloaded. Finally, the A/D

digital output was displayed in sign and magnitude format for real time

feedback to the operator of the effective signal range and for use in cali-

. bration of converter offset and gain.

Figure A -1 shows the various timing signals provided the analog

system from the digital system and also an analog-digital path labeled

( "level discriminate." This was used for conditional sampling patterns

as described in Chapter 2 and consisted of two discriminators. The

t first was a threshold detector connected to the integrator output. This

supplied a state change whenever the integrator output exceeded a pro-

grammable analog threshold. The second line provided a digital output

from a window discriminator which changed state only when the sampled

value from one of the wideband samplers fell within a programmable

analog voltage window. This latter circuit had a minimum window
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resolution of 10 mV.

The analog signal processing system utilized state-of-the-art de-

vices in conventional circuitry that was carefully optimized to provide

the required dynamic range, operator feedback and flexibility to con-

duct an evolving experimental program in which goals and techniques

were expected to change as information and insight developed.

A. 3 Digital Timing and Control

The digital timing and control system was organized as a synchro-

nous machine on a basic period of 10 tsec, counted down from the 1 -MHz

crystal oscillator. The first 3 Rsec of this period were devoted to sam-

pling, signal multiplexing and the start of A/D conversion. The 4-5 •sec

time period was reserved for reading data, stored in core, for output to

the paper tape punch. The last 2 psec were reserved for formatting

data from the converter, temporary storage and writing into core mem-

ory. Sampling patterns were generated as multiples of this 10-g•sec

period. Sampling could be specificd as continuous with spacing, TS, of

n10, 20, 50, 100, 200 gasec, etc., to 10 seconds, or, in groups of size 2

Group spacing was independently specified, as was interior sample

spacing. The total sample record could be specified as 256 • 2 n, 0

n _< 9, or indefinite. All timing functions could be linearly scaled by a

factor 0. 1 a a 1 for synchronous operation at other band center fre-

quencies. This was accomplished by varying the input oscillator fre-

quency from 1 MHz to 100 kHz.

The digital process control was a dc coupled, finite state, machine

which could be placed in various testicalibrate modes or initialize/run
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mode. In the latter all counters and check circuits were cleared and

armed by front panel control and a data run begun by pressing the "GO"

button. During the data run, the state of various digital functions was

monitored and sampling inhibited in the event of the machine trying to

enter a disallowed state such as writing new data over data that had not

been read out from memory, or exceeding the programmed number of

total samples. The state of the process control was displayed via front

panel lights, as was core storage remaining. Synchronous interrupt

circuits were also provided to allow the operator to stop sampling or data

outputting, during the run, without requiring re-initialization.

A. 4 Data Handling

The A/D digital output, in l's complement, was converted to sign

and magnitude and stored in core memory in one of three forms. The

first was a direct transfer of the entire 15-bit word into one 16-bit

( core memory word. This mode generally provided greater sample

resolution than necessary, at the expense of data throughput to the re-

corder, and was only used for applications where such resolution or the

sample sign was required, such as measuring the autocorrelation of the

bandlimited rf noise waveform. The second mode retained only the

mist significant 8 bit-, of the sample magnitude, packed two samples per

core word, and was used principally for the A(ti) sample record which

was unipolar and of reduced dynamic ra.ige. The third and most often

used mode was termed "compressed" and retained either the most sig-

nificant 7 bits of the sample magnitude or bits 6 through 12 if bits 1

through 5 were all zero (where bit 1, B MSB). Bit8 of the stored



sample indicated whether B1 -B 7 or B6-B 12 was present. This mode

of operation provided varying resolution but increased dynamic range

for maximum data throughput and, as will be seen in Appendix B, was

compatible with the probability density estimation algorithm that was

used. We emphasize that while the second two modes of operation sacri-

ficed digital resolution in storing and transmitting the sample, the con-

verter always operated at 15 bit resolution. and hence the precision of

each 7 or 8 bit sample was that of the original 15 bit conversion. Thus,

for example, the resolution of mode two was a relative 2-8 but this bit

was set to a one or zero with a precision of 214 in the conversion pro-

cess.

An automatic data handling test system was built in and exercised

prior to each major data r3cording effort. This system sent a staircase

waveform., of 4 steps, to the A/D converter, with binary weighting between

steps. This was converted, stored and outputted to the punch in all data

handling modes and provided easily verifiable bit patterns on the paper

tape. Since the waveform was derived from the precision reference

source of the A/D converter, it tested relative converter performance

and the entire data format and processing operation through to the punch.

A.5 Data Storage and Output

The core memory, used as a buffer between the variable sampling

rates and paper punch, was a comraercial grade, 1. 5-Rsec access time,

memory manufactured by Cambridge Memories. The punch was a Tally

Corporation Model P-120 with 120, 8 bit, character/second capacity.

The punch was operated on a "handshake" basis with the digital process



-194-
control. Punch line power was supplied via an isolation transformer

and the data and logic control signals were transferred via an optical

isolator. Thus, there was no common ground or conducting connection

between the analog-digital instrumentation system and punch, preventing

ground loop conduction o1 the large current transients generated by the

punch solenoid drivers.

A detailed description of the digital system is given by Lee. 2 4 As

we noted before the entire instrumentation system was characterized

by conservative design and adaptability, both features required for

study of noise w;,-vvforms whose characteristics were not known in

advance. Each subsystem was tested during assembly. as were the

analysis programs given in Appendix B. Finally, a one-month period

was devoted to testing the entire hardware/software system as out-

lined in Appendix C.

(
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Appendix B

DATA ANALYSIS ALGORITHMS

Appendix A described three modes in which the binary word, repre-

senting the data sample, were recorded on paper tope. This tape

record was read into the PDP-IX cert'puter and stored on magnetic

tape for all further analysis and use. The tape reading subroutine

unpacked the 16 bit word and rescaled the "compressed" format sample

so that the analysis programs treated each sample as a 14 bit integer

plus sign, with only the value of the least significant bit, entered at the

time of analysis, indicating the actual format used in recording.

B-I Probability Density Analysis

The basic frequency-of-occurrence analysis one can perform on a

14 bit integer sample record (neglecting sign) is to count the number

of occurrences of each discrete value, or which there are 214-1 pos-

sible values. In terms of the continuous probability density of the

noise waveform, this can be thought of as sorting all samples into

"bins" of normalized width 2-14. The probability density estimate

based on each bin population is then

Number of Samples in Bin x.nd(xi) = ______________
(Total Samples) • (LSB Value)

For our purposes in analyzing atmospheric noise sample records,

which have a large dynamic range and low probability of occurrence

in the large amplitude region, such a technique leads to a large
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variance in the individual bin estimates and is prohibitive in terms of

memory requirements for a 14 bit maximum word length. An alter-

nate technique that smooths the probability density estimate and re-

sults in a small memory requirement is to represent each sample word

b
as a binary floating point number,N = a • 2 , where "a" is a 4 bit

number and 0 _< b -< 10. The occurrence of each sample value will be

trepresented by a point in an 8 X 12 matrix where the first index specifies

the 8 possible values of "a" (there are not 16, except at b = 0, since

a given value o" b specifies that Bl11b = a, = 1) and the second, the

value of b. Sorting samples in this manner c•.n be easily programmed

with a rotate instruction to fina the leading 1 bit (the b index) and then

strobing out the next three bits for the a index.

The principal advantage of this floating point analysis algorithm

is that it provides a bin width which expands fxponentially,in disc cete

steps,for increasing signal amplitude. Viewed another way, we can

say that it provides a non-stationary smoothing function for the proba.

bility estimate since it averages across a larger number of the basic

bins for increasing signal amplitude. The probablity density estimate

for this procedure is given by

Nr Samples in Bin x.
(Total Samples) (LSB Value). (2

where LSB value is the value, in volts, of the least sig nificam bit .of

the data format used on the record being analyzed. For use in cal-

culating sample moments the signal value at bin center is used (the



average value for sign and magnitude representation)

x. = (a+l/2) • LSB Value • 2b.

B-2 Probability Density Estimation Error

It is well known 4 9 that the probability of a sample occurring in a

given "bin" is a binomial trial with probability of occurrence

.0x°+B (i)w = Bin Width,

x
0

where px( () is the true, continuous probability density of x. With the

estimate of p given by (Number in bin)/(Total Samples N) the vari..

ance of the estimate is (assuming independent samples)

2

2 pq p

A N NP' anorm 2 pNp p

If we describe p x (.) as

Px (0) ,0 •<x < Xo0

Px(x) = Px(O)

m+l x o
X

and consider the two cases of constant bin width and the exponentially

increasing bin width (where we approximate the discrete increases as

a continuous relation)

logZx
B =B , B =Z =x

the normalized • stimate variance is
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Constant Exponential

1,/[)-(0) BwoN, x < xo I/Px(0) xN, x < x°

42 2¢norm €norm
n Lxm+ /px(0) BwoN, x > x0  xm/px(0) N, x > x°

This qualitative behavior is summarized in Figure B-I where we sef'

that the exponential bin width associated with the floating point number

representation provides a minimum estimation error in the most critical

region of the probability density. Greatest weight was given to fitting

the model to the estimated density in this region (Chapter 3).

LOG2( %() ) E..t.te Error It LOG}[ý il

Assum*J pd,plx)

Error for IFI L OG(•Consat,. Elm Width\

Error for Actual Estimnator

LOG,(x

Figurt B-I. Probability Density Estimate Error.
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B-3 Probability Density Surface Analysis

The probability density surface analysis, used for the joint chan-

nel data records, employed a floating point representation for the

envelope channel sample with a = 1 and for the rf chamnel sample with

a = 3. This resulted in a 4 X 13 X 13 matrix to represent all possible

occurrences. Density estimation and moments were computed as in

B-1 above.

B-4 Correlation Analysis

All sample records that were intended for correlation analysis

were taken in continuous bursts where the burst length was much

longer than the correlation interval of interest. The basic correlation

technique was then to use a conventional lagged products algorithm on

each burst and then average each correlation point across all bursts.

Samples from different signal sources were interleaved on the record

without synchronization codes, a check of correct data transfer was

provided by total sample count which was accurately controlled in the

instrumentation system.

If we define the following quantities;

A(i), B(i) - Sample Records,

n - correlation point of PAB(n), N - Burst Record Length,

K - maximum value of n, M - number of bursts,

then the correlation coefficient was estimated as
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1 M N-K

M Ij N - K Z A(jN+i) B(jN+i+n)A(i) B(i+n) 1= ~
PAB (n) ==

2(i) NM NM 1/2(i) IB 1 )A 2 (i) 1' B2(i) J /2

NM =i l=i

This provides an unbiased estimate of PAB(n), however, little can be

said about estimate variance since the statistics are ll non-Gaussian.

In practice the entire 80000 point sample record was used to obtain

the best stability possible.

i

C
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C
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Appendix C

INSTRUMENTATION TESTS

C-I Probability Density Tests

The first test that was conducted of the instrumentation hard-

ware and analysis software was a uniform distribution test. An

asynchronous square wave was integrated to form a triangular wave,

which when sampled, gave rise to a uniform probability distribution.

The principal application of this was to calibrate slight inequalities

in the widths of the A/D converter quantization. These were apparent

at the low amplitude estimates of the probability density and appeared

as a noise of much greater variance than predicted with a binomial

assumption (see Appendix B). A corrective scale factor that reduced

the uniform probability density estimate to the correct value was then

inserted in the analysis program and applied to all data analysis.

The second test involved use of a General Radio Random Noise

Generator whose output, with flat power spectral density across the

20 kHz to 500 kHz band, was applied to the instrumentation system by

transformer coupling to the loop antenna. The resulting bardlimited noise

waveform was sampled at 10 times the filter correlation time and

the resulting probability density analysis converted to a cumulative

distribution. This is shown below, plotted on Gaussian probability paper

where a Gaussian cumulative distribution plots as a straight line.
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The last probability density test to be applied consisted of an

asynchronous sine wave which was modulated between two levels of

50-50. POK, g,_o) 16 V Peak-Peak and

SZOO 200 mV Peak-Peak. This

7!.-- 8 modulation was at a

- '-100 Hz rate which was

. ROS ,I,,l,, NA YSasynchronous with both
V~ ~:0A IL1 4t "AVh•. 3~ii7k. 0 k a 1 .. t. _ the rf sine wave and the

sampling time-base. This

type of waveform approxi-

. ,.0 1.5 2.o 2.5 3.0 3.5 4.0 x0'RMs"uit m ated, in dynam ic range,

Figure C-1. Estimate of Gaussian Cumula- the type of behavior anti-
tive Distribution cipated in atmospheric

noise u-aveforms. rhe modulated sine wave was sampled using the

"compressed" data mode and the resulting probability density estimate

matched quite well the sum of two 114/-1 - xz/xZ functions which de-
p

scribe such a switched, randomly sampled,sine wave.

C-2 Correlation Tests

A single effective test of the A(ti) estimate generators and correla-

tion software was made by using a switched attenuator, as described

above, to modulate the power level of a white Gaussian noise process.

The white noise was then bandlimited at two different center frequencies

and the A(ti) estimates of the short-time power level were formed using

S1 msec integration times. The two resulting integrator waveforms are

I
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shown in Figure C-2. We note the obviously greater variation in the

estimates, represented by the peak of the ramp, in the narrowband

waveform compared to the broader bandwidth. The auto and cross-

correlation analysis for a 10, 000 point sample record is shown in the

same figure. The waveform variance is indicated by the shaded areas

at the origin, where we see that the .75 kHz bandwidth, slightly less than

used in the final data recordings, yields a normalized variance of the

power level estimate of 0. 1. In comparison, the analysis of the 1 msec

integration time data indicated variances of 0.7-0. 85 and we would con-

clude that this is a reasonably accurate measure of atmospheric noise

characteristics rather than an effect caused by the background Gaussian

noise. Other tests verified the correlation software for bipolar data

and the various data recording modes.
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